Модифіковані функції Беселя
Матеріал з Вікі ЦДУ
Версія від 15:21, 19 травня 2010; Куян Юлія Іванівна (обговорення • внесок)
Модифіковані функції Бесселя - це функції Бесселя від уявного аргументу. Якщо в диференціальному рівнянні Бесселя
- Неможливо розібрати вираз (невідома помилка): z^2 \frac{d^2 \omega}{dz^2} + z \frac{d\omega}{dz} + (z^2 - \nu^2)\omega = 0
замінити Неможливо розібрати вираз (невідома помилка): \ z
на Неможливо розібрати вираз (невідома помилка): \ iz
, воно набуде вигляду
- Неможливо розібрати вираз (невідома помилка): z^2 \frac{d^2 \omega}{dz^2} + z \frac{d\omega}{dz} - (z^2 + \nu^2)\omega = 0, \qquad (1)
Це рівняння називаєтьсямодифікованим рівнянням Бесселя Якщо Неможливо розібрати вираз (невідома помилка): ~\nu
не є цілим числом, то функції Бесселя Неможливо розібрати вираз (невідома помилка): ~J_\nu(iz) и Неможливо розібрати вираз (невідома помилка): ~J_{-\nu}(iz) є двома лінійно незалежними розв'язками рівняння Неможливо розібрати вираз (невідома помилка): ~(1)
, проте частіше використовують функції
- Неможливо розібрати вираз (невідома помилка): I_\nu(z)=e^{-\frac{i\nu\pi}{2}}J_ \nu \left( z e^{\frac{i\pi}{2}}\right)=\sum^\infty_{k=0}\frac{\left( \dfrac{z}{2} \right)^{2k+\nu}}{k!\Gamma(k+\nu+1)}
и Неможливо розібрати вираз (невідома помилка): ~I_{-\nu}(z).