Зміст курсу "Теоретична фізика" (Термодинаміка і статистична фізика)"

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Зміст курсу
 

Зміст

Зміст курсу

Змістовий модуль І. ТЕРМОДИНАМІКА

Тема 1. Вступ

Теоретичний матеріал

Лекція №1 Вступ

1. Два методи дослідження макроскопічних процесів: феноменологічна термодинаміка і статистична фізика. Термодинамічна система, параметри, рівновага.

2. Загальність і обмеженість термодинамічного методу.

3. Статистична фізика як основа теорії макроскопічних процесів і її роль у становленні сучасних уявлень про будову речовини.

Самостійна робота

Історія створення та розвитку термодинаміки і статистичної фізики


Тема 2. Основні поняття термодинаміки

Теоретичний матеріал

Лекція №2 Основні поняття термодинаміки

1. Нульове начало термодинаміки. Температура.

2. Рівноважні і нерівноважні процеси. Внутрішня енергія системи. Робота і теплота.

3. Термічне і калоричне рівняння стану.

Практичні завдання

Практичне заняття №1 Рівняння стану

Практичне заняття №2 Робота і кількість теплоти

Практичне заняття №3 Внутрішня енергія

Самостійна робота

Гомогенні і гетерогенні системи


Тема 3. Перший закон термодинаміки

Теоретичний матеріал

Лекція №3 Перший закон термодинаміки

1. Перший закон термодинаміки.

2. Теплоємність. Загальний вираз для зв’язку між Ср і Сv для простої системи (доведення).

Практичні завдання

Практичне заняття №4 Теплоємність. Політропічні процеси

Самостійна робота

Теплоємності і теплоти ізотермічних змін зовнішніх параметрів

Основні термодинамічні процеси (політропічний, адіабатичний, ізотермічний) та їх рівняння

Зв’язок між коефіцієнтами пружності і теплоємностями


Тема 4. Другий закон термодинаміки

Теоретичний матеріал

Лекція №4 Другий закон термодинаміки

1. Різні формулювання 2 закону термодинаміки.

2. Оборотні і необоротні процеси.

3. Ентропія та абсолютна температура.

4. Специфічність теплоти як форми енергії. Основне рівняння термодинаміки для рівноважних процесів.

5. Зв’язок між термічним і калоричним рівняннями стану (виведення).

6. Друге начало термодинаміки для нерівноважних процесів. Закон зростання ентропії.

Практичні завдання

Практичне заняття №5 ККД теплових двигунів

Самостійна робота

Термодинамічна шкала температур

Зростання ентропії при дифузії газів і парадокс Гіббса

Цикл Карно і теореми Карно


Тема 5. Третій закон термодинаміки

Теоретичний матеріал

Лекція №5 Третій закон термодинаміки

1. Третє начало термодинаміки. Теорема Нернста.

2. Недосяжність абсолютного нуля.

Практичні завдання

Практичне заняття №7 Ентропія та її зміна

Самостійна робота

Хімічна спорідненість.

Виродження ідеального газу.


Тема 6. Методи термодинаміки

Теоретичний матеріал

Лекція №6. Методи термодинаміки

1. Метод циклів і метод термодинамічних потенціалів (характеристичних функцій).

2. Термодинамічні потенціали ідеального газу (доведення на прикладі внутрішньої енергії).

3. Рівняння Максвелла. Рівняння Гіббса-Гельмгольца.

Мнемонічний квадрат Радушкевича

4. Мнемонічне правило Радушкевича для встановлення зв'язку між характеристичними функціями та параметрами стану простої термодинамічної системи.

5. Система зі змінним числом частинок. Хімічний потенціал.

6. Недоліки термодинамічного опису процесів.

Практичні завдання

Практичне заняття №6 Метод циклів та його застосування

Практичне заняття №8 Метод термодинамічних потенціалів

Самостійна робота

Термодинамічні потенціали ідеального газу (вільна енергія, термодинамічний потенціал Гіббса, ентальпія).

Термодинамічні потенціали систем із змінним число частинок.

Анрі Луї Ле Шательє Французський фізик, хімік, металознавець (1850-1936).

Тема 7. Умови рівноваги і стійкості термодинамічних систем

Теоретичний матеріал

Лекція №7. Умови рівноваги і стійкості термодинамічних систем

1. Загальні умови термодинамічної рівноваги і стійкості.

2. Стійка рівновага адіабатичної ізольованої системи. Принцип максимуму ентропії.

3. Принцип ле Шательє-Брауна.

Самостійна робота

Критерії стійкості ізотермічних систем.


Тема 8. Фазові переходи і критичні явища

Бенуа Клайперон Французський фізик і інженер (1799-1964).

Самостійна робота

Фазові переходи і критичні явища

1. Умови рівноваги двох фаз речовини та її стійкість. Класифікація фазових переходів.

2. Фазові перетворення першого роду та умови рівноваги фаз в однокомпонентній системі. Крива рівноваги фаз. Критична точка.

3. Рівняння Клайперона-Клаузіуса. Температурна залежність тиску насиченої пари.

4. Рівновага трьох фаз речовини, потрійна точка.

5. Поняття про фазові переходи другого роду. Критичні явища.


Тема 9. Застосування термодинаміки

Самостійна робота

Застосування термодинаміки

1. Ефект Джоуля-Томсона.

2. Охолодження газу за умови його необоротного адіабатичного розширення.

3. Зрідження реальних газів.

4. Охолодження газу за умови його оборотного адіабатичного розширення.

5. Термодинамічні функції магнетиків.

6. Магнітне та ядерне охолодження.

Змістовий модуль ІІ. СТАТИСТИЧНА ФІЗИКА

Тема 1. Елементи теорії ймовірностей

Самостійна робота

Елементи теорії ймовірностей

1. Випадкові події. Випадкові величини. Імовірність. Густина імовірностей. Нормування імовірностей.

2. Теореми додавання і множення ймовірностей.

3. Обчислення середнього значення випадкової величини. Дисперсія.

4. Функція розподілу імовірностей. Розподіл імовірностей для значень випадкової фізичної величини.

5. Біноміальний розподіл ймовірностей.

6. Формула Стірлінга.

7. Розподіл Пуассона.

8. Розподіл Гаусса.

9. Ймовірність як міра несподіванки.

Тема 2. Макроскопічний і мікроскопічний стани системи

Теоретичний матеріал

Лекція №1 Макроскопічний і мікроскопічний стани системи

1. Мікроскопічний опис макросистеми і статистичний характер макропроцесів.

2. Термодинамічна рівновага. Фазовий простір, фазова траєкторія. Поняття про статистичний ансамбль системи.

3. Функція розподілу в фазовому просторі. Припущення про рівність середнього за часом середньому за статистичним ансамблем. Ергодична гіпотеза.

4. Макроскопічні величини як фазові середні мікроскопічних змінних.

Практичні завдання

Практичні заняття № 9-10 Фазовий простір. Канонічний розподіл Гіббса

Самостійна робота

Теорема Ліувілля про збереження фазового об’єму


Тема 3. Мікроканонічний і канонічний розподіли Гіббса

Теоретичний матеріал

Лекція №2 Мікроканонічний і канонічний розподіли Гіббса

1. Зв’язок статистичного розподілу із адитивними законами збереження.

2. Мікроканонічний розподіл в класичній статистиці.

3. Квазінезалежні підсистеми і канонічний розподіл Гіббса. Фізичний зміст модуля канонічного розподілу.

Практичні завдання

Практична №1

Тема 4. Розподіл Максвелла-Больцмана

Розподіл Максвелла і Больцмана як частинні випадки канонічного розподілу. Молекула ідеального газу як квазінезалежна підсистема. Розподіл молекул за імпульсами і координатами. Розподіл молекул за швидкостями та енергіями. Розподіл молекул за висотою у полі сил тяжіння.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 5. Розподіл Гіббса в квантовій статистиці

Розподіл Гіббса в квантовій статистиці. Статистична сума і статистична вага. Перехід від квантової статистики до класичної. Квазікласичний розподіл (метод квантових комірок.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 6. Великий канонічний розподіл

Квазізамкнена система із змінним числом частинок. Великий канонічний розподіл. Властивості канонічного розподілу для систем із змінним числом часинок.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 7. Статистичний зміст законів термодинаміки

Вивід із умови нормування канонічного розподілу рівняння Гіббса-Гельмгольца та об’єднаного запису першого і другого начал термодинаміки. Теплота і робота, їх мікроскопічний зміст. Перший закон статистичної термодинаміки як наслідок канонічного розподілу. Статистичний зміст ентропії. Формула Больцмана. Статистичний характер ІІ закону термодинаміки. Статистичне обґрунтування ІІІ закону термодинаміки.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 8. Термодинамічні функції класичного ідеального газу

Термодинамічні величини як середні за канонічним розподілом. Статистичний інтеграл для ідеального газу. Обчислення основних термодинамічних потенціалів (параметрів термодинамічної системи) за допомогою канонічного розподілу. Рівняння стану ідеального газу. Рівняння Гіббса-Гельмгольца.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 9. Реальний газ

Врахування взаємодії між молекулами. Статистичний інтеграл для реального газу. Рівняння стану реального одноатомного газу.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 10. Класична теорія теплоємності газу

Вивід теореми про рівномірний розподіл кінетичної енергії за ступенями вільності із канонічного розподілу Гіббса. Застосування теореми в класичній теорії теплоємностей. Результати класичної теорії теплоємностей і порівняння їх з експериментальними даними.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 11. Квантова теорія теплоємності ідеального газу

Обчислення статистичної суми за станами однієї молекули. Поділ теплоємності на складові, які відповідають поступальному, коливальному і обертальному руху молекули. Обчислення складових теплоємності і порівняння результатів з експериментальними даними.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 12. Розподіли Фермі і Бозе

Різні моделі поведінки частинок. Модель Максвелла-Больцмана. Нерозрізненість частинок. Моделі Бозе-Ейнштейна і Фермі-Дірака. Вивід формул статистичних розподілів Фермі-Дірака і Бозе-Ейнштейна із великого канонічного розподілу. Умови переходу до розподілу Гіббса (Максвелла-Больцмана), критерій виродження.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 13. Електронний газ у металах

Вільні електрони в металах як вироджений Фермі-газ. Аналіз розподілу Фермі-Дірака. Характеристична температура. Розподіл електронів за швидкостями і енергіями. Внутрішня енергія і теплоємність виродженого електронного газу в металах.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 14. Вироджений Бозе-газ

Ідеальний Бозе-газ при низьких температурах. Явище Бозе-конденсації. Поняття про надплинність і надпровідність.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 15. Фотонний газ

Явище конденсації у виродженому Бозе-газі. Рівноважне випромінювання як фотонний газ. Опис властивостей фононного газу за допомогою статистики Бозе-Ейнштейна. Формула Планка. Закон Стефана-Больцмана. Закон зміщення Віна.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 16. Квантова теорія теплоємності твердих тіл

Класична теорія. Теплоємність при низьких температурах. Модель Ейнштейна. Недоліки теорії Ейнштейна. Нормальні моди. Фонони. Модель Дебая. Температура Дебая. Вивід формули для теплоємності, виходячи із уявлень про фонони.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 17. Флуктуації

Поняття флуктуації. Розрахунок флуктуацій за допомогою канонічного розподілу Гіббса. Флуктуації основних термодинамічних величин. Флуктуації випромінювання. Флуктуації густини в газах. Молекулярне розсіяння світла та голубий колір неба.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 18. Броунівський рух

Поняття про броунівський рух. Розрахунок середнього квадрата зміщення броунівської частинки, формула Ейнштейна-Смолуховського.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Тема 19. Елементи теорії нерівноважних систем

Кінетичні коефіцієнти. Принцип симетрії кінетичних коефіцієнтів Онзагера. Кінетичне рівняння Больцмана і принцип детальної рівноваги. Інтеграл зіткнень. Час релаксації і довжина вільного пробігу. Теплопровідність в газах, коефіцієнт дифузії. Теплопровідність і в’язкість газу. Виробництво ентропії. Ефект Зеєбека, Пельтьє і Томсона.

Теоретичний матеріал

Лекція №1

Лекція №2

Лекція №3

Практичні завдання

Практична №1

Практична №2

Самостійна робота

Самостійна робота №1

Самостійна робота №2