Відмінності між версіями «Історія;»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
(Історія)
Рядок 1: Рядок 1:
 
== <p align=center>Історія</p> ==
 
== <p align=center>Історія</p> ==
 
Диференціальні рівняння винайдені Ньютоном (1642–1727). Ньютон вважав цей свій винахід настільки важливим, що зашифрував його у вигляді анаграми, смисл якої в сучасних термінах можна вільно передати так: «закони природи виражаються диференціальними рівняннями».
 
Диференціальні рівняння винайдені Ньютоном (1642–1727). Ньютон вважав цей свій винахід настільки важливим, що зашифрував його у вигляді анаграми, смисл якої в сучасних термінах можна вільно передати так: «закони природи виражаються диференціальними рівняннями».
 +
[[Файл:764.jpg]]
  
 
Основним аналітичним досягненням Ньютона було розкладання всіляких функцій в ступеневі ряди (смисл другої, довгої анаграми Ньютона в тому, що для вирішення будь-якого рівняння потрібно підставити в рівняння ряд і прирівняти члени однакового степеня). Особливе значення мала тут відкрита ним формула бінома Ньютона (зрозуміло, не тільки з цілими показниками, для яких формулу знав, наприклад, Вієт (1540–1603), але і, що особливо важливе, з дробовими і негативними показниками). Ньютон розклав в «ряди Тейлора» всі основні елементарні функції (раціональні, радикали, тригонометричні, експоненту і логарифм). Це, разом з складеною ним таблицею первісних (яка перейшла в майже незмінному вигляді в сучасні підручники аналізу), дозволяло йому, за його словами, порівнювати площі будь-яких фігур «за половину чверті години».
 
Основним аналітичним досягненням Ньютона було розкладання всіляких функцій в ступеневі ряди (смисл другої, довгої анаграми Ньютона в тому, що для вирішення будь-якого рівняння потрібно підставити в рівняння ряд і прирівняти члени однакового степеня). Особливе значення мала тут відкрита ним формула бінома Ньютона (зрозуміло, не тільки з цілими показниками, для яких формулу знав, наприклад, Вієт (1540–1603), але і, що особливо важливе, з дробовими і негативними показниками). Ньютон розклав в «ряди Тейлора» всі основні елементарні функції (раціональні, радикали, тригонометричні, експоненту і логарифм). Це, разом з складеною ним таблицею первісних (яка перейшла в майже незмінному вигляді в сучасні підручники аналізу), дозволяло йому, за його словами, порівнювати площі будь-яких фігур «за половину чверті години».

Версія за 23:30, 21 травня 2014

Історія

Диференціальні рівняння винайдені Ньютоном (1642–1727). Ньютон вважав цей свій винахід настільки важливим, що зашифрував його у вигляді анаграми, смисл якої в сучасних термінах можна вільно передати так: «закони природи виражаються диференціальними рівняннями». 764.jpg

Основним аналітичним досягненням Ньютона було розкладання всіляких функцій в ступеневі ряди (смисл другої, довгої анаграми Ньютона в тому, що для вирішення будь-якого рівняння потрібно підставити в рівняння ряд і прирівняти члени однакового степеня). Особливе значення мала тут відкрита ним формула бінома Ньютона (зрозуміло, не тільки з цілими показниками, для яких формулу знав, наприклад, Вієт (1540–1603), але і, що особливо важливе, з дробовими і негативними показниками). Ньютон розклав в «ряди Тейлора» всі основні елементарні функції (раціональні, радикали, тригонометричні, експоненту і логарифм). Це, разом з складеною ним таблицею первісних (яка перейшла в майже незмінному вигляді в сучасні підручники аналізу), дозволяло йому, за його словами, порівнювати площі будь-яких фігур «за половину чверті години».

Ньютон указував, що коефіцієнти його рядів пропорційні послідовним похідним функції, але не зупинявся на цьому детально, оскільки він справедливо вважав, що всі обчислення в аналізі зручніше проводити не за допомогою кратних диференціювань, а шляхом обчислення перших членів ряду. Для Ньютона зв'язок між коефіцієнтами ряду і похідними був скоріше засобом обчислення похідних, чим засобом складання ряду. Одним з найважливіших досягнень Ньютона є його теорія сонячної системи, викладена в «Математичних принципах натуральної філософії» («Principia») без допомоги математичного аналізу. Зазвичай вважають, що Ньютон відкрив за допомогою свого аналізу закон всесвітнього тяжіння. Насправді Ньютону (1680) належить лише доказ еліптичності орбіт в полі тяжіння за законом зворотних квадратів: сам цей закон був вказаний Ньютону Гуком (1635–1703) і, мабуть, вгадувався ще декількома вченими.

З величезного числа робіт XVIII століття з диференціальних рівнянь виділяються роботи Ейлера (1707–1783) і Лагранжа (1736–1813). У цих роботах була передусім розвинена теорія малих коливань, а отже — теорія лінійних систем диференціальних рівнянь; попутно виникли основні поняття лінійної алгебри (власні числа і вектори в n-мірному випадку). Характеристичне рівняння лінійного оператора довго називали секулярним, оскільки саме з такого рівняння визначаються секулярні (вікові, тобто повільні в порівнянні з річним рухом) збурення планетних орбіт згідно з теорією малих коливань Лагранжа. Услід за Ньютоном Лаплас і Лагранж, а пізніше Гаус (1777–1855) розвивають також методи теорії збуджень.

Коли була доведена нерозв'язність алгебраїчних рівнянь в радикалах, Жозеф Ліувілль (1809–1882) побудував аналогічну теорію для диференціальних рівнянь, встановивши неможливість рішення низки рівнянь (зокрема таких класичних, як лінійні рівняння другого порядку) в елементарних функціях і квадратурі. Пізніше Софус Лі (1842–1899), аналізуючи питання про інтегрування рівнянь в квадратурі, прийшов до необхідності детально досліджувати групи дифеоморфізмів (що отримали згодом ім'я груп Лі) — так з теорії диференціальних рівнянь виникла одна з найплідніших областей сучасної математики, подальший розвиток якої був тісно пов'язаний зовсім з іншими питаннями (алгебри Лі ще раніше розглядали Сімеон-Дені Пуассон (1781–1840) і, особливо, Карл Густав Якоб Якобі (1804–1851)).

Новий етап розвитку теорії диференціальних рівнянь починається з робіт Анрі Пуанкаре (1854–1912), створена ним «якісна теорія диференціальних рівнянь» разом з теорією функцій комплексних змінних привела до заснування сучасної топології. Якісна теорія диференціальних рівнянь, або, як тепер її частіше називають, теорія динамічних систем, зараз розвивається найактивніше і має найважливіші застосування теорії диференціальних рівнянь в природознавстві.