Задача СП з апріорними розв’язувальними розподілами. Зведення до розв’язку задачі скінченно-вимірного нелінійного програмування.
Неможливо розібрати вираз (невідома помилка): (3.1)\;M\psi_{0}(x)=\int\psi_{0}(x)dF_{x}\rightarrow inf,
Неможливо розібрати вираз (невідома помилка): (3.2)\;M\psi_{i}(x)=\int\psi_{i}(x)dF_{x}\leq 0,\;i=1,2,..,m,
Неможливо розібрати вираз (невідома помилка): (3.3)\;x\in X,
Неможливо розібрати вираз (невідома помилка): (3.4)\;M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_xdF_{\omega}\rightarrow inf,
Неможливо розібрати вираз (невідома помилка): (3.5)\;M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_xdF_{\omega}\leq 0,\;i=1,..,m,
Неможливо розібрати вираз (невідома помилка): (3.6)\;x\in X,
Неможливо розібрати вираз (невідома помилка): (3.7)\;M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_{x|\omega}dF_{\omega}\rightarrow inf,
Неможливо розібрати вираз (невідома помилка): (3.8)\;M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_{x|\omega}dF_{\omega}\leq 0,\;i=1,..,m,
Неможливо розібрати вираз (невідома помилка): (3.9)\;x\in X.
3.3. Визначення апріорних розв'язувальних розподілів задач другого класу - стохастичних задач виду (3.4) - (3.6) може бути аналогічним чином зведено до розв'язку задач скінчено-вимірного нелінійного програмування.
Введемо наступне позначення:
Неможливо розібрати вираз (невідома помилка): (3.17)\;\int\limits_{\Omega}\overline{\psi_i}(\omega,x)dF_{\omega}=\overline{\psi_i}(x),\;i=0,1,...,m.
В цих позначеннях задача (3.4) - (3.6) зводиться до задачі виду (3.1) - (3.3).
Повторюючи міркування попереднього пункту, прийдемо до висновку, що обчислення апріорних розв'язувальних розподілів задачі (3.4) - (3.6) еквівалентно розв'язку наступної скінчено-вимірної задачі математичного програмування.
Вимагається обчислити вектори Неможливо розібрати вираз (невідома помилка): x_k
і числа Неможливо розібрати вираз (невідома помилка): p_k
, які визначають нижню грань функціонала:
Неможливо розібрати вираз (невідома помилка): (3.18)\;{\sum^{m}_{k=0}\overline{\psi_{0}}(x_k)p_{k}},
за умови
Неможливо розібрати вираз (невідома помилка): (3.19)\;{\sum^{m}_{k=0}\overline{\psi_{i}}(x_{k})p_{k}}\le 0,
Неможливо розібрати вираз (невідома помилка): (3.20)\;x_{k}\in X,p_{k}\ge 0,k = 0,1,...m,\sum^{m}_{k=0} p_{k}=1.
Оптимальний план Неможливо розібрати вираз (невідома помилка): x^\ast_{k}
, Неможливо розібрати вираз (невідома помилка): p^\ast_{k}
, Неможливо розібрати вираз (невідома помилка): k=0,1,...,m,
задачі (3.18) - (3.20) визначає дискретний розв'язувальний розподіл задачі (3.4) - (3.6).
У випадку, коли множина Неможливо розібрати вираз (невідома помилка): X
складається із скінченного числа Неможливо розібрати вираз (невідома помилка): s точок Неможливо розібрати вираз (невідома помилка): x_1,...,x_s
, обчислення розв'язувального розподілу зводиться до розв'язку задачі лінійного програмування:
Неможливо розібрати вираз (невідома помилка): (3.21)\;{\sum^{s}_{k=1}\overline\psi_{0}(x_{k})p_{k}}\rightarrow min,
Неможливо розібрати вираз (невідома помилка): (3.22)\;{\sum^{s}_{k=1}\overline\psi_{i}x_{k}p_{k}\le 0,\;i = 1,...m},
Неможливо розібрати вираз (невідома помилка): (3.23)\;\sum^{s}_{k=1}p_{k}=1,
Неможливо розібрати вираз (невідома помилка): (3.24)\;p_{k}\ge 0,k = 1,...s.
Крім умов невід'ємності змінних задача має Неможливо розібрати вираз (невідома помилка): m+1
обмеження. Тому оптимальний план задачі (3.21) - (3.24) містить не більше Неможливо розібрати вираз (невідома помилка): m+1 додатних значень Неможливо розібрати вираз (невідома помилка): p_{k}
. Величини Неможливо розібрати вираз (невідома помилка): p^\ast_{k}>0
і відповідні їм вектори Неможливо розібрати вираз (невідома помилка): x^\ast_{k} визначають апріорний дискретний розв'язувальний розподіл розглянутої задачі. Приведені нижче міркування справедливі і для множини Неможливо розібрати вираз (невідома помилка): X
, що складається зі зліченого числа точок. Цей же принцип може бути використаний для наближення апріорного розвязувального розподілу у випадку, коли множина Неможливо розібрати вираз (невідома помилка): X
являє собою компакт. Дискретне значення Неможливо розібрати вираз (невідома помилка): x_k відповідає вузлам Неможливо розібрати вираз (невідома помилка): \varepsilon
-мережі множини Неможливо розібрати вираз (невідома помилка): X .
3.4. Обчислення апостеріорних розв'язувальних правил стохастичної задачі (3.7) - (3.9) в загальному випадку пов'язано зі значними труднощами. Однак у випадку, коли простір Неможливо розібрати вираз (невідома помилка): \Omega
елементарних подій складається зі скінченого числа Неможливо розібрати вираз (невідома помилка): (r) елементів, ймовірність яких задана, розв'язок спрощується. Побудова опуклої оболонки множини
Неможливо розібрати вираз (невідома помилка): Y=\left \{y_i=\psi_i(\omega,x),\;i=0,1,...,m,\;x\in X \right \},
можна уявити у вигляді двоетапної операції. На початку будуються опуклі оболонки множини Неможливо розібрати вираз (невідома помилка): Y
при фіксованих значеннях Неможливо розібрати вираз (невідома помилка): \omega
, а потім у відповідності з дискретною ймовірнісною мірою на Неможливо розібрати вираз (невідома помилка): \Omega
визначається опукла комбінація множин, побудованих на першому етапі. Ясно, що отримане в результаті зазначених побудов множина опукла.
Обмеженням (3.8) відповідають обмеження на елементи цієї множини. Задача (3.7) - (3.9) зводиться в цьому випадку, як і задача (3.1) - (3.З) і (3.4) - (3.6), до кінцево-мірної задачі нелінійного програмування. Розв’язок цієї задачі (вектори Неможливо розібрати вираз (невідома помилка): x^\ast_{k},k=1,...,(m+1)r , і спільні ймовірності Неможливо розібрати вираз (невідома помилка): p^\ast_{kl}
використання Неможливо розібрати вираз (невідома помилка): x^\ast_{k} і Неможливо розібрати вираз (невідома помилка): \omega_l,l=1,..,r
) визначають дискретний апостеріорний розв’язувальний розподіл задачі (3.7) - (3.9). Ці ж міркування можуть бути використані для побудови наближених апостеріорних розв’язувальних розподілів у випадках, коли множина Неможливо розібрати вираз (невідома помилка): X
і Неможливо розібрати вираз (невідома помилка): \Omega компактні.
З наведених міркувань видно, що, якщо функції Неможливо розібрати вираз (невідома помилка): \psi_i(\omega,x),i=0,1,...,m,
опуклі по Неможливо розібрати вираз (невідома помилка): x при кожному Неможливо розібрати вираз (невідома помилка): \omega
, то оптимальний розв’язувальний розподіл не дозволяє поліпшити цільовий функціонал в порівнянні з оптимальним розв’язувальним правилом. Чисті стратегії дозволяють в цьому випадку отримати той же ефект, що і мішані стратегії. Ясно, що цей висновок справедливий і в тому випадку, коли Неможливо розібрати вираз (невідома помилка): \Omega
не є дискретною множиною. У Неможливо розібрати вираз (невідома помилка): \S 5 буде доведено результат, відповідно до якого при неперервній мірі Неможливо розібрати вираз (невідома помилка): F_{\omega} на Неможливо розібрати вираз (невідома помилка): \Omega можна, не погіршуючи якості розв’язку задачі (3.7) - (3.9) і не вимагаючи опуклості Неможливо розібрати вираз (невідома помилка): \psi_i(\omega,x),i=0,1,...,m, при кожному Неможливо розібрати вираз (невідома помилка): \omega
, замінити апостеріорні розв’язувальні розподіли на апостеріорні розв’язувальні правила.
Було отримано умови оптимальності для задач виду (3.7) - (3.9). Вони дозволяють побудувати методи обчислення апостеріорних розв’язувальних розподілів для стохастичних задач загального вигляду. При заданому розподілі Неможливо розібрати вираз (невідома помилка): F_{\omega}
розв’язувальні розподіли можуть бути побудовані за допомогою методів, узагальнюючих методи можливих напрямків. У випадках, коли можна спостерігати реалізацію Неможливо розібрати вираз (невідома помилка): \omega
, для побудови апостеріорних розв’язувальних розподілів пропонуються ітеративні обчислювальні схеми, узагальнюючі методи стохастичної апроксимації.
Виконала: Юрченко Тетяна Сергіївна
Доповнювала: Татьяненко Марина Олександрівна