Задача СП. М-модель з імовірнісними обмеженнями з детермінованою матрицею коефіцієнтів обмежень. Детермінована задача. Двоїста задача.
Розглянемо задачу лінійного стохастичного програмування з ймовірнісними обмеженнями типу М-модель:
Неможливо розібрати вираз (невідома помилка): M(cx)\rightarrow max
(1.1),
Неможливо розібрати вираз (невідома помилка): P(\sum^{n}_{j=1}{a_{ij}x_{j}}\leqslant b_{i})\geqslant \alpha_{i},i=1,\ldots,m
(1.2),
Неможливо розібрати вираз (невідома помилка): x_{j}\geqslant 0,j=1,\ldots,n
(1.3)
C – випадкові числа, Неможливо розібрати вираз (невідома помилка): \alpha_{i}>0,5, \alpha_{i}<1
При детермінованій матриці Неможливо розібрати вираз (невідома помилка): A=||{a_{ij}||
і випадковому веторі Неможливо розібрати вираз (невідома помилка): b={{b_{ij}} дана задача зводиться до детермінованої задачі лінійного програмування.
Дійсно, нехай Неможливо розібрати вираз (невідома помилка): \phi{b_{1}...\phi{b_{m}
– загальна щільність розподілу елементів b_{i} випадкового вектора b. Щільність розподілу компонента b_{i} рівна:
Неможливо розібрати вираз (невідома помилка): phi{i}({b_{i})=\int_\-infty^\infty...\int_\-infty^\infty \phi{b_{1}...\phi{b_{m}\prod^\{i\nej} db_{j}