Дві часткові стохастичні моделі з розв'язувальними правилами нульового порядку.

Матеріал з Вікі ЦДУ
Версія від 13:52, 15 лютого 2013; Сальник Катерина Сергіївна (обговореннявнесок)

(різн.) ← Попередня версія • Поточна версія (різн.) • Новіша версія → (різн.)
Перейти до: навігація, пошук

Розглянемо 2 часткові P-моделі з детермінованими обмеженнями і випадковими коефіцієнтами лінійної форми. Побудуємо відповідні детерміновані еквіваленти.

Нехай потрібно

Неможливо розібрати вираз (невідома помилка): P(cx\leq{k})\to{max}

(1)

за умов

Неможливо розібрати вираз (невідома помилка): Ax\geq{b}

           (2)

Неможливо розібрати вираз (невідома помилка): x\geq{0}

            (3)

Елементи матриці А та компоненти вектора b детерміновані, а компоненти вектора c випадкові.

Припускають, що розв’язок задачі (1)-(3) визначається серед детермінованих векторів.

До схеми виду (1)-(3) зводиться задача планування виробництва при випадкових втратах, пов’язаних з реалізацією різних технологічних способів. Оптимальний план повинен максимізувати ймовірність того, що сумарні затрати не перевищать деякої, заданої вищою організацією, величини.

Модель №1.

В цій моделі випадковий вектор Неможливо розібрати вираз (невідома помилка): ~c=c(\omega)

припускається рівним Неможливо розібрати вираз (невідома помилка): ~c=c_{0}+c_{1}\tau(\omega)

, де Неможливо розібрати вираз (невідома помилка): ~c_{0},c_{1}

– детерміновані вектори,Неможливо розібрати вираз (невідома помилка): ~\tau(\omega)
– випадкова величина.