Дві леми двоїстості
Лема 3.1(основна нерівність теорії двоїстості).
Якщо Неможливо розібрати вираз (невідома помилка): X=(x_1,x_2,\ldots,x_n)
та Неможливо розібрати вираз (невідома помилка): Y=(y_1,y_2,\ldots,y_m)
— допустимі розв’язки
відповідно прямої та двоїстої задач, то виконується нерівність:
Неможливо розібрати вираз (невідома помилка): F(X) \le Z(Y)
або Неможливо розібрати вираз (невідома помилка): \sum_{j=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i .
(3.7)
Доведення.Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі:
Неможливо розібрати вираз (невідома помилка): \left\{ {\begin{array}{l} a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \le b_1; y_1 \\ a_{21} x_1 + a_{22} x_2 + \ldots+ a_{2n} x_n \le b_2; y_2 \\ ................................ \\ a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \le b_m; y_m \\ \end{array}} \right.
Маємо:
Неможливо розібрати вираз (невідома помилка): \left\{ {\begin{array}{l} a_{11} x_1 y_1 + a_{21} x_2 y_1 + \ldots + a_{1n} x_n y_1 \le b_1 y_1 \\ a_{21} x_1 y_2 + a_{22} x_2 y_2 + \ldots+ a_{2n} x_n y_2 \le b_2 y_2 \\ ................................ \\ a_{m1} x_1 y_m + a_{m2} x_2 y_m + \ldots + a_{mn} x_n y_m \le b_m y_m \\ \end{array}} \right.
Підсумувавши праві і ліві частини нерівностей, отримаємо:
Неможливо розібрати вираз (невідома помилка): \sum_{i=1}^m y_i (\sum_{j=1}^n a_{ij} x_j) \le \sum_{i=1}^m b_i y_i
(3.8)
Аналогічно перетворимо систему обмежень (3.5) двоїстої за-дачі:
Неможливо розібрати вираз (невідома помилка): \left\{ {\begin{array}{l} a_{11} y_1 + a_{21} y_2 + \ldots + a_{m1} y_m \ge c_1; x_1 \\ a_{12} y_1 + a_{22} y_2 + \ldots + a_{m2} y_m \ge c_2; x_2 \\ ................................ \\ a_{1n} y_1 + a_{2n} y_2 + \ldots + a_{mn} y_m \ge c_n; x_n \\ \end{array}} \right.
Підсумувавши після множення тут також ліві та праві части-ни, отримаємо нерівність:
Неможливо розібрати вираз (невідома помилка): \sum_{j=1}^n x_j (\sum_{i=1}^m a_{ij} y_i) \ge \sum_{j=1}^n c_j x_j
(3.9)
Ліві частини нерівностей (3.8) та (3.9) збігаються, отже:
Неможливо розібрати вираз (невідома помилка): \sum_{j=1}^n c_j x_j \le \sum_{j=1}^n x_j (\sum_{i=1}^m a_{ij} y_i) = \sum_{i=1}^m y_i (\sum_{j=1}^n a_{ij} x_j) \le \sum_{i=1}^m b_i y_i .
Нерівність (3.7) доведено.
Лема 3.2(достатня умова оптимальності).
Якщо Неможливо розібрати вираз (невідома помилка): X^{*}=(x_1^*,x_2^*,\ldots,x_n^*)
та Неможливо розібрати вираз (невідома помилка): Y^{*}=(y_1^*,y_2^*,\ldots,y_m^*)
— допустимі розв’язки
відповідно прямої та двоїстої задач, то виконується нерівність:
Неможливо розібрати вираз (невідома помилка): F(X^{*})=Z(Y^{*})
(3.10)
то Неможливо розібрати вираз (невідома помилка): X^{*},Y^{*}
— оптимальні розв’язки відповідних задач.
Доведення. Нехай Неможливо розібрати вираз (невідома помилка): X_1
— допустимий план прямої задачі (3.1)—(3.3). Тоді на підставі нерівності (3.7) маємо:
Неможливо розібрати вираз (невідома помилка): F(X_1) \le Z(Y^{*}).
За умовою задачі Неможливо розібрати вираз (невідома помилка): F(X^{*})=Z(Y^{*})
, отже
Неможливо розібрати вираз (невідома помилка): F(X_1) \le Z(Y^{*})= F(X^{*})