Навчальний курс "Теорія міри та інтегралу" Гаєвський М.В.

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук

Назва курсу

Теорія міри та інтеграла (ТМІ)



Програма з курсу «Теорія міри та інтегралу» відповідає навчальному плану для держуніверситетів. Курс «Теорія міри та інтегралу» є необхідною складовою частиною базової теоретичної підготовки студента-математика та основою для подальшого вивчення спеціальний дисциплін.

Він дає можливість засвоїти основні теоретичні відомості з абстрактної теорії міри та теорії інтегралу Лебега, а також практичні вміння та навички що до обчислення міри множин на прямій та інтегрування функцій однієї змінної. Курс «Теорія міри та інтегралу» розрахований для студентів 3 курсу математичного факультету спеціальності «Статистика».

Робоча програма курсу

Мета та завдання навчального курсу

Мета полягає у викладенні основних понять і фактів сучасної теорія міри та інтегралу на базі теорії множин, вищої алгебри та математичного аналізу.

Завданням є розглянути основні поняття теорії міри, вимірних функцій та інтегралу, навчити типовим методам обчислення мір множин, інтегралів від вимірних функцій та застосуванню цих методів в різних розділах математики, сприяти засвоєнню знань, необхідних для подальшого вивчення теорії інтегральних рівнянь та функціонального аналізу.

У результаті вивчення навчального курсу студент повинен

знати:

  • поняття міри та вимірних множин;
  • поняття півкільця, кільця, алгебри та сигма- кільця, алгебри;
  • борелівську класифікацію множин;
  • алгоритм побудови міри Лебега;
  • означення вимірної функції;
  • властивості вимірних функцій;
  • означення та способи обчислення інтегралу Лебега, невизначеного інтеграла Лебега, інтегралів Лебега-Стільтьєса;
  • основні твердження про збіжність інтегралів та вимірних функцій.

вміти:

  • перевіряти замкненість, відкритість, вимірність множин, належність до відповідних борелівських класів;
  • перевіряти вимірність та інтегрованість за Лебегом функцій;
  • обчислювати міру Лебега, Лебега-Стільтьєса різних множин;
  • визначати значення інтеграла Лебега, Лебега-Стільтьєса в різних випадках;
  • знаходити зв'язок з інтегралом Рімана;
  • застосовувати теорему Фубіні.

Автор (автори) курсу

Гаєвський Микола Вікторович


Учасники

студенти 37 групи

Графік навчання

Тижневих годин для денної форми навчання: Аудиторних – 4 Самостійної роботи студента – 6


Структура

Змістовий модуль 1. Основні класи множин. Міра та її властивості.

[1. Кільце, алгебра, півкільце. Їхні приклади і властивості. Теорема про кільце, породжене півкільцем. Борельові множини. - 2 год.]

[2. Основні класи функцій множин. Міра на півкільці, елементарні властивості міри. Теореми про неперервність міри. - 2 год.]

3. Продовження міри з півкільця на породжене кільце. Зовнішня міра та її основні властивості. Міра на кільці. - 2 год.

4. Вимірність за Каратеодорі. Теорема Каратедорі про клас вимірних множин. Вимірність за Каратеодорі елементів вихідного кільця. Єдиність продовження міри з кільця на породжене сигма-кільце. Наближення значень міри її значеннями на кільці. - 2 год.

5. Міри Жордана, Лебега на прямій і на площині. - 2 год.

6. Міра Лебега–Стілтьєса - 2 год.

Теми практичних робіт

[Практичне заняття 1. Класи множин — 2 год.]

[Практичне заняття 2. Класи множин. Адитивні функції множин — 2 год.]

Практичне заняття 3. Міра та її властивості — 2 год.

Практичне заняття 4. Зовнішня міра. Вимірні множини. Продовження міри — 2 год.

Практичне заняття 5. Міра Лебега на прямій — 2 год.

Практичне заняття 6. Міра Лебега в просторі Міра Лебега-Стілтьєса на прямій — 2 год.

Практичне заняття 7. Контрольна робота — 2 год.


Змістовий модуль 2. Вимірні функції. Інтеграл Лебега

1. Вимірні функції, критерій вимірності (дійсної) функції. Арифметичні дії над вимірними функціями. Вимірність послідовності вимірних функцій. — 2 год.

2. Прості вимірні функції. Апроксимація вимірних функцій простими. Властивості, що виконуються майже скрізь. Збіжність майже скрізь, теореми про єдиність та про вимірність границі. Теорема Єгорова. Збіжність за мірою. — 2 год.

3. Означення інтеграла Лебега. Теорема про наближення значення інтеграла інтегралами від простих функцій. — 2 год.

4. Елементарні властивості інтеграла Лебега. — 2 год.

5. сигма–адитивність інтеграла Лебега як функції множин. абсолютна неперервність інтеграла Лебега— 2 год.

6. Граничний перехід під знаком інтеграла Лебега. Теорема про монотонну збіжність. Теорема Б.Леві. Лема Фату. Теорема Лебега про мажоровану збіжність. — 2 год.

7. Порівняння інтеграла Рімана та інтеграла Лебега. Критерій Лебега інтегровності за Ріманом. Порівняння невласного інтеграла Рімана та інтеграла Лебега. Інтеграл Лебега–Стілтьєса на прямій. Застосування. — 4 год.

8. Інтеграл Лебега від невід’ємної необмеженої функції. Сумовні функції довільного знака. — 2 год.

9. Неперервність та диференційовність інтеграла Лебега, що залежить від параметра. Заміна змінної в інтегралі Лебега. — 6 год.

10. Подвійні та повторні інтеграли. Теорема Фубіні. — 2 год.

11. Простори сумовних функцій. — 2 год.

Теми практичних робіт

Практичне заняття 8. Вимірні функції та їх властивості. — 2 год.

Практичне заняття 9. Еквівалентні функції. Збіжність майже скрізь — 2 год.

Практичне заняття 10. Збіжність за мірою послідовності функцій — 2 год.

Практичне заняття 11. Означення інтеграла Лебега — 2 год.

Практичне заняття 12. Властивості інтеграла Лебега — 6 год.

Практичне заняття 13. Граничний перехід під знаком інтеграла Лебега — 2 год.

Практичне заняття 14. Контрольна робота — 2 год.

Ресурси

Рекомендована література

а) основна

1. Дороговцев А.Я. Элементы общей теории меры и интеграла. — К.: Факт, 2007. — 164 с.

2. Колмогоров А.М., Фомін С.В. Елементи теорії функцій та функціонального аналізу. — К.: Наукова думка, 1977. — 578 с.

3. Натансон І.П. Основи теорії функцій дійсної змінної. К., 1950. - 546с.

4. Березанский Ю. М., Ус Г.Ф., Шефтель З. Г. Функциональный анализ. Курс лекций. — К.: Выща школа, 1990.— 600 с.

б) додаткова

5. Завдання до практичних занять з теорії міри та інтеграла для студентів спеціальностей „математика і „статистика” механіко-математичного факультету / Укладачі А.Я.Дороговцев, С.Д.Івасішен, О.Ю.Константінов, О.Г.Кукуш, О.О.Курченко, О.Н.Нестеренко, Т.О.Петрова, А.В.Чайковський. — К.: ВПЦ „Київський університет”, 2003. — 89 c.

6. Методы решения задач по функциональному анализу: Учебное пособие / В.В.Городецкий, Н.И.Нагнибида, П.П.Настасиев. — К.: Выща школа., 1990. — 479 с.

7. Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа.— М.: Наука, 1979.— 382 с.

8. Натансон И.П. Теория функций вещественной переменной.— М.: Наука, 1974. — 480 с.

9. Федоров В. М. Курс функционального анализа. - СПб.: Лань, 2005. - 352 с.



Інформаційні ресурси

1. www.mon.gov.ua

2. www.cdu.edu.ua

3. www.nbuv.gov.ua

4. www.math.ru

5. www.exponenta.ru


---