Навчальний курс "Теорія міри та інтегралу" Гаєвський М.В.
Назва курсу
Теорія міри та інтеграла (ТМІ)
Програма з курсу «Теорія міри та інтегралу» відповідає навчальному плану для
держуніверситетів. Курс «Теорія міри та інтегралу» є необхідною складовою частиною базової
теоретичної підготовки студента-математика та основою для подальшого вивчення
спеціальний дисциплін.
Він дає можливість засвоїти основні теоретичні відомості з абстрактної теорії міри та теорії інтегралу Лебега, а також практичні вміння та навички що до обчислення міри множин на прямій та інтегрування функцій однієї змінної. Курс «Теорія міри та інтегралу» розрахований для студентів 3 курсу математичного факультету спеціальності «Статистика».
Мета та завдання навчального курсу
Мета полягає у викладенні основних понять і фактів сучасної теорія міри та інтегралу на базі теорії множин, вищої алгебри та математичного аналізу.
Завданням є розглянути основні поняття теорії міри, вимірних функцій та інтегралу, навчити типовим методам обчислення мір множин, інтегралів від вимірних функцій та застосуванню цих методів в різних розділах математики, сприяти засвоєнню знань, необхідних для подальшого вивчення теорії інтегральних рівнянь та функціонального аналізу.
У результаті вивчення навчального курсу студент повинен
знати:
- поняття міри та вимірних множин;
- поняття півкільця, кільця, алгебри та зчислених півкільця, кільця, алгебри;
- борелівську класифікацію множин;
- алгоритм побудови міри Лебега;
- означення вимірної функції;
- властивості вимірних функцій;
- означення та способи обчислення інтегралу Лебега, невизначеного інтеграла Лебега, інтегралів Лебега-Стільтьєса;
- основні твердження про збіжність інтегралів та вимірних функцій.
вміти:
- перевіряти замкненість, відкритість, вимірність множин, належність до відповідних борелівських класів;
- перевіряти вимірність та інтегрованість за Лебегом функцій;
- обчислювати міру Лебега, Лебега-Стільтьєса різних множин;
- визначати значення інтеграла Лебега, Лебега-Стільтьєса в різних випадках;
- знаходити зв'язок з інтегралом Рімана;
- застосовувати теорему Фубіні.