Генератори випадкових чисел

Матеріал з Вікі ЦДУ
Версія від 16:56, 4 червня 2009; Гупалов Антон (обговореннявнесок)

(різн.) ← Попередня версія • Поточна версія (різн.) • Новіша версія → (різн.)
Перейти до: навігація, пошук

Генерация случайных чисел и моделирование Последовательности случайных чисел используются в программировании в самых разнообразных случаях, начиная с моделирования (это наиболее частое применение) и кончая играми и другим развлекательным программным обеспечением. Турбо Паскаль содержит встроенную функцию, называемую Random, которая генерирует случайные числа. Как вы увидите в данной главе, Random - это превосходный генератор случайных чисел, но для некоторых применений вам может потребоваться два или более различных генераторов для обеспечения различных наборов случайных чисел для различных задач. Кроме того, при моделировании требуется ассиметричный или дисбалансный генератор случайных чисел, который порождает последовательность, смещенную к одному из концов. Первая часть данной главы посвящена построению генераторов случайных чисел и оценке их качества. Во второй части данной главы показывается, как вы можете использовать случайные числа при моделировании реальных ситуаций на двух примерах. В примерах иллюстрируются фундаментальные основы прогр

Генераторы случайных чисел Технически термин "генератор случайных чисел" - это абсурд; числа само по себе не являются случайными. Например, 100 - это случайное число? А 25? Что в действительности означает этот термин, так это то, что создается последовательность чисел, появляющихся случайным образом. Это порождает более сложный вопрос: что такое последовательность случайных чисел? Единственно правильный ответ: последовательность случайных чисел _ это последовательность, в которой все элементы являются несвязанными. Это определение приводит к такому парадоксу, что любая последовательность может быть как случайной, так и неслучайной в зависимости от того, как эта последовательность получена. Например, следующая строка чисел

   1 2 3 4 5 6 7 8 9 0 была получена печатанием верхней строки клавиатуры по порядку, таким образом последовательность конечно не может рассматриваться как сгенерированная случайным образом. Но как быть, если вы получите ту же самую последовательность, вынимая пронумерованный теннисные шары из боченка. В данном случае это уже случайным образом сгенерированная последовательность. Данный пример показывает, что случайность последовательности зависит от того, как она была получена, а не от нее самой.

Помните, что последовательность чисел, сгенерированная компьютером, является детерминированной: каждое число, кроме первого, зависит от предшествующих чисел. Технически это означает, что компьютером может быть сгенерирована только квазислучайная последовательность чисел. Однако, этого достаточно для большинства задач и в данной книге такие последовательности для простоты будут называться случайными. В общем случае считается хорошо, когда числа в последовательности случайных чисел распределены равномерно (не путайте это с нормальным распределением или колоколообразной кривой). При равномерном распределении все события равновероятны так, что диаграмма равномерного распределения стремится к прямой горизонтальной линии, а не к кривой. До широкого распространения компьютеров всякий раз, когда необходимы были случайные числа, они получались либо бросанием игральных костей, либо выниманием пронумерованных шаров из ящика. В 1955 году фирма RAND опубликовала таблицу из 1 миллиона случайных чисел, полученных с помощью вычислительной машины. На ранней стадии развития вычислительной техники было разработано много методов генерации случайных чисел, но большинство из них не нашло применения. Один очень интересный метод был разработан Джоном фон Нейманом; его часто называют среднеквадратичным. В данном методе предыдущее случайное число возводится в квадрат, а затем из результата выделяются средние цифры. Например, если вы создаете числа из трех цифр, а предыдущее число было 121, то возведение в квадрат дает результат 14641. Выделение трех средних цифр дает следующее случайное число 464. Недостатком данного метода является то, что он имеет очень короткий период повторения, называемый циклом. По данной причине данный метод сегодня не используется. В настоящий момент наиболее часто применяется метод генерации случайных чисел, основывающийся на использовании уравнения

      R    = (aR +c)modm
       n+1         n

при выполнении следующих условий

   R>0
   a>0
   c>0
   m>R , a и c

Отметим, что R - это предыдущее число, а R - следующее. Данный метод иногда называют линейным сравнительным методом. Формула так проста, что вы можете подумать, что генерировать случайные числа просто. Однако, это ловушка: насколько хорошо работает данная формула, очень сильно зависит от значения а, с и m. Выбор значений иногда в большей степени искусство, нежели наука. Существуют сложные правила, которые могут помочь вам выбрать значения; однако, мы рассмотрим лишь несколько простых правил и примеров. Модуль (m) должен быть довольно большим, так как он определяет область случайных чисел. Операция взятия по модулю порождает остаток от деления числа на модуль. Следовательно, 10 по модулю 4 равно 2. Таким образом, если модуль равен 12, то формулой порождаются числа от 0 до 11, а если модуль равен 21425, то порождаются числа от 0 до 21424. Выбор множителя а и приращения с является очень сложной задачей. В общем случае множитель может быть довольно большим, а приращение - маленьким. Множество попыток и проверок необходимо, чтобы создать хороший генератор. В качестве первого примера здесь приведен один из наиболее часто используемых генераторов случайных чисел. Уравнение, показанное в Rаn1 используется как основа для генератора случайных чисел в ряде популярных языков.

   var
     a1: integer; { установка до первого вызова Ran1 }
   function Ran1: real;
   var
     t: real;
   begin
     t := (a1*32749+3) mod 32749;
     a1 := Trunc(t);
     Ran1 := Abs(t/32749);
   end; {Rea1}

Данная функция имеет три главные особенности. Во-первых, случайные числа в действительности являются целыми, хотя функция возвращает действительные числа. Данный метод работает с целыми числами, но генераторы случайных чисел, как это принято, должны возвращать числа в пределах от 0 до 1, что означает, что это должны быть числа с плавающей запятой. Во-вторых, начальное значение задается через глобальную переменную а1. До первого вызова Ran1 переменная а1 должна быть установлена в 1. В-третьих, в Ran1 случайные числа делятся на модуль прежде, чем они будут возвращены функцией, для того, чтобы числа лежали в области от 0 до 1. Если вы поинтересуетесь значением глобальной переменной а1 до возврата строки, то оно должно лежать в области от 0 до 32748. Следовательно, когда а1 делится на 32749, полученное число будет больше или равно 0 и меньше 1. Многие генераторы случайных чисел не применимы, так как они порождают не равномерное распределение или имеют короткий цикл повторения. Даже когда эти недостатки не очень бросаются в глаза, они могут породить смешанный результат, если такой генератор используется снова и снова. Решение заключается в том, чтобы создать различные генераторы и применять их индивидуально или совместно для получения более качественных последовательностей случайных чисел. Применение нескольких генераторов может сгладить распределение последовательности за счет уменьшения малых смешений отдельных генераторов. Далее приведена функция генерирования случайных чисел, называемая Ran2, которая порождает хорошее распределение:

   var
     a2:integer; { установить в значение 203 до первого вызова
                   Ran2 }
   function Ran2: real;
   var
     t: real;
   begin
     t := (a2*10001+3) mod 17417;
     a2 := Trunc(t);
     Ran2 := Abc(t/17417);
   end; {Ran2}

Оба этих генератора случайных чисел порождают хорошие последовательности случайных чисел. Тем не менее остаются вопросы: достаточно ли "случайной" является последовательность? Хороши ли данные генераторы?