Постановка двохетапної задачі СП.
Розглянемо задачу лінійного програмування:
Неможливо розібрати вираз (невідома помилка): cx\rightarrow min
(21.1)
Неможливо розібрати вираз (невідома помилка): \ Ax = b
(21.2)
Неможливо розібрати вираз (невідома помилка): x\geqslant 0 (21.3)
тут
Неможливо розібрати вираз (невідома помилка): c=\left \{ c_j \right \} , Неможливо розібрати вираз (невідома помилка): \ j = 1,...n,
Неможливо розібрати вираз (невідома помилка): b=\left \{ b_i \right \} , Неможливо розібрати вираз (невідома помилка): \ i = 1,...m,
Неможливо розібрати вираз (невідома помилка): b^{(1)} =\left \{ b^{(1)}_k \right \} , Неможливо розібрати вираз (невідома помилка): \ k = 1,...m_1,
Неможливо розібрати вираз (невідома помилка): A =\left \| \ a_ij^{(1)} \right \| , Неможливо розібрати вираз (невідома помилка): \ i = 1,...m,
- Неможливо розібрати вираз (невідома помилка): \ j = 1,...n,
- Неможливо розібрати вираз (невідома помилка): A^{(1)} =\left \| \ a_kj^{(1)} \right \|
, Неможливо розібрати вираз (невідома помилка): \ k = 1,...m_1,
- Неможливо розібрати вираз (невідома помилка): \ j = 1,...n,
В випадку, коли елементи матриці Неможливо розібрати вираз (невідома помилка): \ A = A(\omega)
і векторів Неможливо розібрати вираз (невідома помилка): \ b = b(\omega) і Неможливо розібрати вираз (невідома помилка): \ c = (c\omega) - випадкові величини і рішення Неможливо розібрати вираз (невідома помилка): \ x слід прийняти спостереження реалізації випадкових параметрів умов, постановка і порядок рішення задачі повинно бути уточнено.
Уявімо собі процес вирішення завдання (21.1) - (21.4) такий спосіб. Виберемо спочатку( на першому етапі) вектор, що задовольняє умови (21.3) - (21.4). Потім зафіксуємо реалізацію Неможливо розібрати вираз (невідома помилка): \widehat\omega