Метод узагальнених стохастичних градієнтів для розв’язання двохетапної задачі СП. Загальний алгоритм.
Метод узагальнених стохастичних градієнтів не припускає диференціювання цільової функції задачі і не вимагає завдання статистичних характеристик випадкових параметрів умов задачі. Метод стохастичних градієнтів є загальним методом стохастичної апроксимації. Для ітеративного розв’язання задачі використовується послідовність реалізації матриці Неможливо розібрати вираз (невідома помилка): \ A(\omega)
і векторів Неможливо розібрати вираз (невідома помилка): \ b(\omega) та Неможливо розібрати вираз (невідома помилка): \ c(\omega)
.
Метод стохастичних градієнтів може бути використаний також для розв’язання нелінійної двохетапної стохастичної задачі. Застосування методу узагальнених стохастичних градієнтів базується на наступних міркуваннях. Нехай потрібно мінімізувати опуклу вниз функцію Неможливо розібрати вираз (невідома помилка): \ \varphi(\omega)
на опуклій множині Неможливо розібрати вираз (невідома помилка): \ K
. Розглянемо наступний ітеративний процес випадкового пошуку розв’язання задачі Неможливо розібрати вираз (невідома помилка): \ x^{s+1}=\pi_K \left ( x^{(s)}-\rho_s \gamma_s \xi^{(s)} \right ) . Тут Неможливо розібрати вираз (невідома помилка): \ x^{(0)}
- довільний n-вимірний вектор, який належить множені Неможливо розібрати вираз (невідома помилка): \ K - початкова точка процесу;
Неможливо розібрати вираз (невідома помилка): \rho_s
- величина кроку на s-й ітерації;