Формули, які зв'язують об'ємний і поверхневий інтеграли

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук

Зв'язок об'ємних і поверхневих інтегралів

Формула Остроградського-Гауса

Неможливо розібрати вираз (невідома помилка): \iiint\limits_{V}div \bar{a}\,dv = \iint\limits_{S} a_n \,ds= \iint\limits_{s} \bar{a} \,d\bar{s}


Інтегрування частинами

Неможливо розібрати вираз (невідома помилка): \iiint\limits_{V}\frac{\partial U_1}{\partial x}U_2\,dv = \iint\limits_{S}U_1U_2cos(\bar{n}x)\,ds - \iiint\limits_{V}U_1\frac{\partial U_2}{\partial x}\,dv


Перша формула Гріна

Неможливо розібрати вираз (невідома помилка): \iiint\limits_{V}\left[ \frac{\partial^2 U_1}{\partial x^2}+\frac{\partial^2 U_1}{\partial y^2}+\frac{\partial^2 U_1}{\partial z^2} \right]^sU_2\,dv=\iint\limits_{S}\left[\frac{\partial^2 U_1}{\partial x}cos(\bar{n},x)+\frac{\partial^2 U_1}{\partial y}cos(\bar{n},y)+\frac{\partial^2 U_1}{\partial z}cos(\bar{n},z)\right]U_2\,ds -

 Неможливо розібрати вираз (невідома помилка): \iiint\limits_{V}\left[ \frac{\partial U_1}{\partial x}\frac{\partial U_2}{\partial x} +\frac{\partial U_1}{\partial y}\frac{\partial U_2}{\partial y}+\frac{\partial U_1}{\partial z}\frac{\partial U_2}{\partial z}\right]\,dv   


Друга формула Гріна

Неможливо розібрати вираз (невідома помилка): \iiint\limits_{V}\left[(\mathcal {4}U_1)U_2-U_1(\mathcal {4}U_2) \right]\,dv=\iint\limits_{S}\left[\frac{\partial U_1}{\partial \bar{n}}U_2-U_1\frac{\partial U_2}{\partial \bar{n}} \right]\,ds


Зв'язок поверхневого і контурного інтеграла

Формула Стокса Неможливо розібрати вираз (невідома помилка): \iint\limits_{s}rot_n\bar{a}\,ds=\int\limits_{c}\bar{a}\,d\bar{r}


Зв'язок між подвійним та криволінійним інтегралом