Означення похідної

Матеріал з Вікі ЦДУ

(різн.) ← Попередня версія • Поточна версія (різн.) • Новіша версія → (різн.)
Перейти до: навігація, пошук

Означення похідної функції. Геометричний і фізичний зміст

Означення похідної в точці

Похідною функції у = f(х) в точці х0 називають границю відношення приросту функції ∆f(x0) в точці х0 до приросту аргументу ∆х, коли приріст аргументу прямує до нуля, тобто

  1231231414.JPG


Функцію у = f(х), що має похідну в точці х0 називають диференційованою в цій точці. Якщо функція у = f(х) має прохідну в кожній точці деякого проміжку, то кажуть, що ця функція диференційована на даному проміжку. Операцію взяття (знаходження) похідної називають диференціюванням функції. У курсі шкільної математики похідні знаходять в основному, не за означенням, а використовуючи таблицю похідних та правила знаходження похідних.

Похідною функції f(x) у точці х0називається границя (якщо вона існує) відношення приросту функції у точці х0до приросту аргументу Δх, якщо приріст аргументу прямує до нуля і позначається f'(x0). Дія знаходження похідної функції називається диференціюванням.

Похідна функції має такий фізичний зміст: похідна функції в заданій точці – швидкість зміни функції в заданій точці.

Похідна функції має такий геометричний зміст: похідна функції в заданій точці є кутовим коефіцієнтом дотичної до графіка функції в цій точці, тобто дорівнює тангенсу кута нахилу дотичної до графіка функції в заданій точці.

Запам’ятайте!

- Похідна функції у = x дорівнює одиниці;

- Похідна степеневої функції дорівнює показнику степеня, помноженому на основу в степені, на одиницю меншу; (похідна функції у = xn дорівнює добутку n іxn-1);

- Похідна функції у = 1/x дорівнює одиниці, поділеній на х2, узятій зі знаком мінус;

- Похідна функції у = √x для додатних х дорівнює 1/(2√x);

- Похідна функції синус х дорівнює косинусу х;

- Похідна функції косинус х дорівнює синусу х, взятому зі знаком мінус;

- Похідна функції тангенс х на її області визначення дорівнює одиниці, поділеній на квадрат косинуса х;

- Похідна функції котангенс х на її області визначення дорівнює одиниці, поділеній на квадрат синуса х, взятій зі знаком мінус;

- Похідна показникової функції у = ах дорівнює цій функції, помноженій на натуральний логарифм основи ах∙ ln а;

- Похідна функції у = ех дорівнює самій функції, тобто ех;

- Похідна логарифмічної функції у = logax на її області визначення дорівнює1/(х∙ ln а);

- Похідна функції у = ln x на її області визначення дорівнює одинці, поділеній на х .

Можна визначити похідні вищих порядків. Похідною n-го порядку (n-ною похідною) називається похідна від похідної (п – 1) порядку.

Таблиця похідних елементарних функцій

12312312312412.JPG

Приклад 1:

Приклад12312.JPG

Розв'язання:

Розвязання1231213.JPG

Приклад 2:

Приклад 2.JPG

Розв'язання:

Розвязання 222222.JPG


Корисний тренажер для запам'ятовування формул