Детермінована задача, еквівалентна до двохетапної задачі СП.

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук

Побудуємо детерміновану задачу, еквівалентну до двохетапної задачі стохастичного програмування.

Розв'язком еквівалентної задачі є попередній план Неможливо розібрати вираз (невідома помилка): \ x . По складовим оптимального попереднього плану і реалізаціям параметрів умов будується задача другого етапу - задача лінійного програмування, розв'язок якої визначає необхідну компенсацію плану. Еквівалентна детермінована задача має вигляд Неможливо розібрати вираз (невідома помилка): \min_{x\in K}Q(x)


Дотепер ми вивчали область визначення Неможливо розібрати вираз (невідома помилка): \ K

попередніх планів двохетапної задачі. Дослідимо тепер цільовий функціонал Неможливо розібрати вираз (невідома помилка): \ Q(x) 
- показник якості попереднього плану. 

Виразимо Неможливо розібрати вираз (невідома помилка): \ Q(x)

через статистичні характеристики параметрів умов задачі і доведемо, що детермінована задача, еквівалентна задачі СП, є задачею опуклого програмуваня. 

Розглянемо задачу другого етапу

Неможливо розібрати вираз (невідома помилка): P(x, A, b)=\min_{\ y}q(y) (3.4)


Неможливо розібрати вираз (невідома помилка): \ {By=b-Ax} (3.5) ,

Неможливо розібрати вираз (невідома помилка): y \geqslant 0 (3.6)


та двоїсту до неї

Неможливо розібрати вираз (невідома помилка): Q(x, A, b)=\max_{\ z}z(b-Ax) (3.8)


Неможливо розібрати вираз (невідома помилка): zB \leqslant q

(3.9)

для кожного Неможливо розібрати вираз (невідома помилка): \ x, A, b .

Будемо вважати, що задача другого етапу, а отже, і двоїста до неї задачі розв'язні.

За теоремою двоїстості для лінійного програмування

Неможливо розібрати вираз (невідома помилка): \ P(x, A, b)= Q(x, A, b)= z*(A, b, x)(b-Ax) ,

де Неможливо розібрати вираз (невідома помилка): \ z*(A, b, x)

- розв'язок задачі (3.8)-(3.9).

Враховуючи введені позначення, можна тепер двохетапну задачу (1.8)-(1.10) переписати наступним чином:

Неможливо розібрати вираз (невідома помилка): \min_{x\in K}Q(x)=\min_{x\in K}{\bar{c}x+MQ(x, A, b)}


або

Неможливо розібрати вираз (невідома помилка): \bar{c}x+M[z*(A, b, x)(b-Ax)]\rightarrow min,

(4.1)

Неможливо розібрати вираз (невідома помилка): x \in K


Має місце твердження.

Теорема 4.1. Нехай матриця Неможливо розібрати вираз (невідома помилка): \ B

задовольняє умовам теореми 3.3 і множина планів задачі (3.8)-(3.90) не порожня. Тоді цільова функція (4.1) еквівалентної детермінованої задачі скінченна для будь-якого Неможливо розібрати вираз (невідома помилка):  x \in K_2

.

Наступне твердження є теоретичною основою для побудови чисельних методів розв'язання двохетапної задачі.

Теорема 4.2. Детермінована задача (4.1)-(4.2), еквівалентна двохетапній задачі (1.8)-(1.10), є задачею опуклого програмування.

Зауважимо, що з опуклості функції Неможливо розібрати вираз (невідома помилка): \ Q(x)

випливає її неперервність у всіх внутрішніх точках опуклої множини Неможливо розібрати вираз (невідома помилка): \ К 

.