Класифікація задач стохастичного програмування: за виглядом цільової функції та за умовами обмеження.

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук

В якості цільової функції задачі стохастичного лінійного програмування з імовірнісними обмеженнями зазвичай приниймають такі функціонали, як математичне сподівання або дисперсію лінійної форми або ймовірність перевищення лінійною формою деякого фіксованого порога.

  • за виглядом цільової функції

1.Задачі з цільовою функцією Неможливо розібрати вираз (невідома помилка): \overline{cx}=M(cx)

називають М- моделями

2.Задачі, в яких потрібно мінімізувати дисперсію лінійної форми Неможливо розібрати вираз (невідома помилка): \ M({cx-\overline{cx}})^2 , називають V-моделями

3.Стохастичні задачі, в яких оптимізується ймовірність перевищення лінійної формою деякого порога Неможливо розібрати вираз (невідома помилка): \ P({cx \geq c^0 x^0}) , називають P-моделями

У цю ж групу моделей включають задачі, де потрібно мінімізувати поріг Неможливо розібрати вираз (невідома помилка): \ {k} , який не повинен бути перевищений лінійною формою Неможливо розібрати вираз (невідома помилка): \ {cx}

із заданою ймовірністю Неможливо розібрати вираз (невідома помилка): \ {\alpha} 

Неможливо розібрати вираз (невідома помилка): \ {k} \rightarrow min,P({cx} \le {k})={\alpha} .

При формалізації стохастичної задачі можна привести у відповідність всій області визначення цільової функції одне або декілька імовірнісних обмежень. Умови задачі (в лінійному випадку) можуть бути представлені у вигляді одного з наступних записів:

  • за умовами обмеження

Неможливо розібрати вираз (невідома помилка): \ a)

Неможливо розібрати вираз (невідома помилка): \ P \left \{ \sum^{n}_{j=1} a_{ij}x_j \geq b_{i} \right \} \geq {\alpha}_{i}, 0 \le {\alpha}_{i} \le 1, i=1,...,m 

,

Неможливо розібрати вираз (невідома помилка): \ b)

Неможливо розібрати вираз (невідома помилка): \ P \left \{ Ax \geq {b} \right \} \geq {\alpha}, 0 \le {\alpha} \le 1 

,

Неможливо розібрати вираз (невідома помилка): \ c)

Неможливо розібрати вираз (невідома помилка): \ P \left \{ \sum^{n}_{j=1} a_{i_kj}x_j \geq b_{i_k}; i_{k}\subset{I_{k}} \right \} \geq {\alpha}_{k}, 0 \le {\alpha}_{k} \le 1, k=1,...,s,    

.