Косинус та синус перетворення Фур'є

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Розглянемо часткові випадки:
1.Нехай функція Неможливо розібрати вираз (невідома помилка): f(x)

-парна,Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -парна,тоді:Неможливо розібрати вираз (невідома помилка): {A(alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)cos(\alpha\ t)dt

Неможливо розібрати вираз (невідома помилка): f(t)sin(\alpha\ t)

-непарна,тоді:Неможливо розібрати вираз (невідома помилка): {B(alpha)}=0;f(x)=\int_0^\infty {A(alpha)}cos (\alpha\ x){d(alpha)}

Якщо функція f(x)-довільна,визначена на проміжку (0; ,то парне продовження цієї функції Неможливо розібрати вираз (невідома помилка): f_2(x)= \begin{cases} f(x),& x \geqslant 0\\ f(-x), & x < 0
розвинення парного продовження:
Неможливо розібрати вираз (невідома помилка): f_2(x)=\int_0^\infty {A(alpha)}cos (\alpha\ x){d(alpha)}
Для будь-якого Неможливо розібрати вираз (невідома помилка): x>=0
Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {A(alpha)}cos (\alpha\ x){d(alpha)}

(*)

2.Нехай Неможливо розібрати вираз (невідома помилка): f(x)

-непарна,тоді Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -непарна,Неможливо розібрати вираз (невідома помилка): f(t)sin (\alpha\ t) -парна;Неможливо розібрати вираз (невідома помилка): {A(alpha)}=0

Неможливо розібрати вираз (невідома помилка): {B(alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)sin(\alpha\ t)dt
Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}

Якщо функція Неможливо розібрати вираз (невідома помилка): f(x) -довільна,визначена на проміжку,тоді непарне продовження буде

Неможливо розібрати вираз (невідома помилка): f(x) = \begin{cases} f(x), & x > 0 \\ 0, & x = 0 \\ f(-x), & x < 0 \end{cases},\ розвинення непарногопродовження: :<math>f_1(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}
Для будь-якогоНеможливо розібрати вираз (невідома помилка): x>=0
Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}

(**)

Розглянемо формулу (*),тоді отримаємо:
Неможливо розібрати вираз (невідома помилка): f(x)={ \sqrt{2}\frac}{pi}\\
Неможливо розібрати вираз (невідома помилка): {F(alpha)}=\int_0^\infty f(t)cos(\alpha\ t)dt

називаэться Косинус-перетвореннямфункціїНеможливо розібрати вираз (невідома помилка): f(x) ,а функція називається Оберненим косинус-перетвореннямдля Неможливо розібрати вираз (невідома помилка): f(x)

Аналогічно вводится пряме та обернене синус-перетворенняНеможливо розібрати вираз (невідома помилка): f(x)
Зауваження:
В деякій літературі пряме синус та косинус-перетворення вводиться з Неможливо розібрати вираз (невідома помилка): (\frac{2}{\pi})

,а оберене з 1.

Функція Неможливо розібрати вираз (невідома помилка): f(x)

називають їїОригіналом,а функції називають ОбразомфункціїНеможливо розібрати вираз (невідома помилка): f(x)

у просторі відповідного перетворення.
Додаткова інформація
При кутовій зміні частоті,змінюється і циклічна частота при цьому косинус-перетвореняя представляє наступні дві формули:
Неможливо розібрати вираз (невідома помилка): g_c(w)=2\int_0^\infty f(t)cos{2\pi\ft}dt


Неможливо розібрати вираз (невідома помилка): f(t)=(\frac{1}{\pi})\int_0^\infty g_c(f)cos((pi))df