Розв’язок рівняння Лапласа у циліндричних координатах. Рівняння Беселя
Рівняння Лапласа - однорідне лінійне рівняння в часткових похідних другого порядку еліптичного типу.
- Неможливо розібрати вираз (невідома помилка): \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0
.
Рівняння Лапласа описує електростатичне поле в просторі без електричних зарядів. Рівнянням Лапласа описується стаціонарний розподіл температури у просторовому тілі.
Функції, які задовільняють рівнянню Лапласа, називаються гармонічними.
Відповідне неоднорідне рівняння називається рівнянням Пуассона.
Рівняння Лапласа - рівняння в частинних похідних. У тривимірному просторі рівняння Лапласа записується так:
- Неможливо розібрати вираз (невідома помилка): \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0
і є частковим випадком рівняння Гельмгольца.
У двовимірному просторі рівняння Лапласа записується:
- Неможливо розібрати вираз (невідома помилка): \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0
Також і вn-вимірному просторі. У цьому випадку до нуля прирівнюється сумаnдругих похідних.
За допомогою диференціального оператора
- Неможливо розібрати вираз (невідома помилка): \triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + ...
- оператора Лапласа - це рівняння записується (для будь-якої розмірності) однаково як Неможливо розібрати вираз (невідома помилка): \triangle u = 0