Умови розв’язуваності задачі другого етапу.

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук

Перепишемо двоетапну задачу стохастичного лінійного програмування в такій формі:

Неможливо розібрати вираз (невідома помилка): \min_{\ x}M_{w}{(cx+P(x,A,b))} (1.1)


Неможливо розібрати вираз (невідома помилка): \ {A^{(1)}{x}=b^{(1)}} (1.2)


Неможливо розібрати вираз (невідома помилка): x \geqslant 0 (1.3)


де

Неможливо розібрати вираз (невідома помилка): P(x, A, b)=\min_{\ y}q(y) (1.4)


Неможливо розібрати вираз (невідома помилка): \ {By=b-Ax} (1.5)



Встановимо умови розв'язності задачі (1.4)-(1.6) другого етапу. Має місце наступна умова обмеженості знизу цільового функціоналу.

Теорема 1.1. Нехай множина Неможливо розібрати вираз (невідома помилка): K_2

непорожня. Для рішення задачі другого етапу при будь-яких реалізаціях А і b і будь-якому попередньому плані x необхідно і достатньо, щоб система нерівностей 

Неможливо розібрати вираз (невідома помилка): zB \leqslant q (1.7)


була розв'язана, тобто щоб

Неможливо розібрати вираз (невідома помилка): \ {(z|zB \leqslant q) \ne \varnothing}.

(Передбачається, що B і q детерміновані).

Доведення: За умовою множина планів задачі (1.4)-(1.6) не порожня. Згідно з теоремою двоїстості лінійного програмування функція Неможливо розібрати вираз (невідома помилка): P(x,A,b)

обмежена знизу в тому і тільки в тому випадку, коли область визначення двоїстої задачі для кожного x, A, b 

Неможливо розібрати вираз (невідома помилка): Q(x, A, b)=\max_{\ z}z(b-Ax) (1.8)


Неможливо розібрати вираз (невідома помилка): zB \leqslant q (1.9)


непорожня. Оскільки область визначення задачі (1.8)-(1.9) не залежить від A, b, x, то при виконанні умови (1.7) задача другого етапу розв'язана при всіх A, b і x. Функція Неможливо розібрати вираз (невідома помилка): P(x,A,b)

в цьому випадку не обмежена знизу для всіх x , і задача (1.1)-(1.3) і, отже, двоетапна задача втрачає сенс. 

Теорема 1.2. Нехай матриця B має m+1 стовбець і задовольняє умовам: