Відмінності між версіями «Постановка двохетапної задачі СП.»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 16: Рядок 16:
  
 
В випадку, коли елементи матриці <math>\ A = A(\omega)</math> і векторів <math>\ b = b(\omega)</math> і <math>\ c = (c\omega)</math> - випадкові величини і рішення <math>\ x  </math> слід прийняти спостереження реалізації випадкових параметрів умов, постановка і порядок рішення задачі повинно бути уточнено.
 
В випадку, коли елементи матриці <math>\ A = A(\omega)</math> і векторів <math>\ b = b(\omega)</math> і <math>\ c = (c\omega)</math> - випадкові величини і рішення <math>\ x  </math> слід прийняти спостереження реалізації випадкових параметрів умов, постановка і порядок рішення задачі повинно бути уточнено.
Уявімо собі процес вирішення завдання (21.1) - (21.4) такий спосіб. Виберемо спочатку( на першому етапі) вектор, що задовольняє  умови (21.3) - (21.4). Потім зафіксуємо реалізацію <math>\widehat\omega </math>
+
Уявімо собі процес вирішення завдання (21.1) - (21.4) такий спосіб. Виберемо спочатку( на першому етапі) вектор, що задовольняє  умови (21.3) - (21.4). Потім зафіксуємо реалізацію <math>\widehat\omega </math> випадкової події і відповідні йому значення елементів <math>\  A(\widehat\omega)</math> i <math>\  b(\widehat\omega)</math>,  оцінимо нев'язку  <math>\  b(\widehat\omega)- A(\widehat\omega) *x(\widehat\omega) </math>

Версія за 18:25, 11 квітня 2013

Розглянемо задачу лінійного програмування:

Неможливо розібрати вираз (невідома помилка): cx\rightarrow min

(21.1)

Неможливо розібрати вираз (невідома помилка): \ Ax = b

(21.2)

Неможливо розібрати вираз (невідома помилка): x\geqslant 0 (21.3)

тут

Неможливо розібрати вираз (невідома помилка): c=\left \{ c_j \right \} , Неможливо розібрати вираз (невідома помилка): \ j = 1,...n,

Неможливо розібрати вираз (невідома помилка): b=\left \{ b_i \right \} , Неможливо розібрати вираз (невідома помилка): \ i = 1,...m,

Неможливо розібрати вираз (невідома помилка): b^{(1)} =\left \{ b^{(1)}_k \right \} , Неможливо розібрати вираз (невідома помилка): \ k = 1,...m_1,

Неможливо розібрати вираз (невідома помилка): A =\left \| \ a_ij^{(1)} \right \| , Неможливо розібрати вираз (невідома помилка): \ i = 1,...m,

Неможливо розібрати вираз (невідома помилка): \ j = 1,...n,
Неможливо розібрати вираз (невідома помилка): A^{(1)} =\left \| \ a_kj^{(1)} \right \|

, Неможливо розібрати вираз (невідома помилка): \ k = 1,...m_1,

Неможливо розібрати вираз (невідома помилка): \ j = 1,...n,


В випадку, коли елементи матриці Неможливо розібрати вираз (невідома помилка): \ A = A(\omega)

і векторів Неможливо розібрати вираз (невідома помилка): \ b = b(\omega)
і Неможливо розібрати вираз (невідома помилка): \ c = (c\omega)
- випадкові величини і рішення Неможливо розібрати вираз (невідома помилка): \ x  
слід прийняти спостереження реалізації випадкових параметрів умов, постановка і порядок рішення задачі повинно бути уточнено.

Уявімо собі процес вирішення завдання (21.1) - (21.4) такий спосіб. Виберемо спочатку( на першому етапі) вектор, що задовольняє умови (21.3) - (21.4). Потім зафіксуємо реалізацію Неможливо розібрати вираз (невідома помилка): \widehat\omega

випадкової події і відповідні йому значення елементів Неможливо розібрати вираз (невідома помилка): \   A(\widehat\omega)
i Неможливо розібрати вираз (невідома помилка): \   b(\widehat\omega)

, оцінимо нев'язку Неможливо розібрати вираз (невідома помилка): \ b(\widehat\omega)- A(\widehat\omega) *x(\widehat\omega)