Відмінності між версіями «Задача СП. М-модель з імовірнісними обмеженнями з детермінованою матрицею коефіцієнтів обмежень. Детермінована задача. Двоїста задача.»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 11: Рядок 11:
  
 
C – випадкові числа,  <math>\alpha_{i}>0,5,  \alpha_{i}<1</math>
 
C – випадкові числа,  <math>\alpha_{i}>0,5,  \alpha_{i}<1</math>
 +
 +
 +
При детермінованій матриці <math>A=||{a_{ij}||</math>    і випадковому веторі <math>b={{b_{ij}}</math> дана задача  зводиться до детермінованої  задачі лінійного програмування.
 +
Дійсно, нехай <math>\phi{b_{1}...\phi{b_{m}</math> – загальна щільність розподілу елементів  b_{i} випадкового вектора b. Щільність розподілу компонента b_{i} рівна:
 +
 +
<math>phi{i}({b_{i})=\int_\-infty^\infty...\int_\-infty^\infty \phi{b_{1}...\phi{b_{m}\prod^\{i\nej} db_{j}</math>

Версія за 18:51, 13 березня 2013

Розглянемо задачу лінійного стохастичного програмування з ймовірнісними обмеженнями типу М-модель:

Неможливо розібрати вираз (невідома помилка): M(cx)\rightarrow max

(1.1),

Неможливо розібрати вираз (невідома помилка): P(\sum^{n}_{j=1}{a_{ij}x_{j}}\leqslant b_{i})\geqslant \alpha_{i},i=1,\ldots,m

(1.2),

Неможливо розібрати вираз (невідома помилка): x_{j}\geqslant 0,j=1,\ldots,n

(1.3)

C – випадкові числа, Неможливо розібрати вираз (невідома помилка): \alpha_{i}>0,5, \alpha_{i}<1


При детермінованій матриці Неможливо розібрати вираз (невідома помилка): A=||{a_{ij}||

    і випадковому веторі Неможливо розібрати вираз (невідома помилка): b={{b_{ij}}
дана задача  зводиться до детермінованої  задачі лінійного програмування.

Дійсно, нехай Неможливо розібрати вираз (невідома помилка): \phi{b_{1}...\phi{b_{m}

– загальна щільність розподілу елементів  b_{i} випадкового вектора b. Щільність розподілу компонента b_{i} рівна:

Неможливо розібрати вираз (невідома помилка): phi{i}({b_{i})=\int_\-infty^\infty...\int_\-infty^\infty \phi{b_{1}...\phi{b_{m}\prod^\{i\nej} db_{j}