Відмінності між версіями «Задача СП з розв’язувальним розподілом за умови детермінованих параметрів умов обмежень. Дискретний розв’язувальний розподіл.»
Рядок 7: | Рядок 7: | ||
<math>\ y = (y_0, y_1, ... , y_m)\in co Y </math>, (19.6) | <math>\ y = (y_0, y_1, ... , y_m)\in co Y </math>, (19.6) | ||
+ | |||
+ | |||
+ | Згідно теореми Каретеодорі для побудови випуклої оболонти множини <math>\ Y </math> із <math>\ m+1 </math> - вимірного простору потрібно загалом не більш <math>\ m+2 </math> точок <math>\ y \in Y </math>. Це значить, що <math>\ co Y </math> може бути представлена в вигляді: | ||
+ | <math>\ co Y= {}</math>. |
Версія за 15:34, 16 лютого 2013
Відображення (19.4) переводить множину Неможливо розібрати вираз (невідома помилка): \ X \subset R ^n , в Неможливо розібрати вираз (невідома помилка): \ X \subset R^{(m+1)} . В цьому випадку Неможливо розібрати вираз (невідома помилка): \ Y - не викупла і незамкнута множина. Позначемо через Неможливо розібрати вираз (невідома помилка): \ co Y
випуклу множину Неможливо розібрати вираз (невідома помилка): \ Y
. Задача (19.1) - (19.3) може бути записана в вигляді:
Неможливо розібрати вираз (невідома помилка): \ y_0 \rightarrow inf , (19.5)
Неможливо розібрати вираз (невідома помилка): \ y_i \le 0, i = 1,...m, , (19.6)
Неможливо розібрати вираз (невідома помилка): \ y = (y_0, y_1, ... , y_m)\in co Y , (19.6)
Згідно теореми Каретеодорі для побудови випуклої оболонти множини Неможливо розібрати вираз (невідома помилка): \ Y
із Неможливо розібрати вираз (невідома помилка): \ m+1 - вимірного простору потрібно загалом не більш Неможливо розібрати вираз (невідома помилка): \ m+2 точок Неможливо розібрати вираз (невідома помилка): \ y \in Y
. Це значить, що Неможливо розібрати вираз (невідома помилка): \ co Y
може бути представлена в вигляді:
Неможливо розібрати вираз (невідома помилка): \ co Y= {} .