Відмінності між версіями «Задача СП з розв’язувальним розподілом за умови детермінованих параметрів умов обмежень. Дискретний розв’язувальний розподіл.»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 7: Рядок 7:
  
 
<math>\ y = (y_0, y_1, ... , y_m)\in co Y </math>, (19.6)
 
<math>\ y = (y_0, y_1, ... , y_m)\in co Y </math>, (19.6)
 +
 +
 +
Згідно теореми Каретеодорі для побудови випуклої оболонти множини  <math>\ Y </math> із  <math>\ m+1 </math> - вимірного простору потрібно загалом не більш <math>\ m+2 </math> точок <math>\ y \in  Y </math>. Це значить, що <math>\ co Y </math> може бути представлена в вигляді:
 +
<math>\ co Y= {}</math>.

Версія за 15:34, 16 лютого 2013

Відображення (19.4) переводить множину Неможливо розібрати вираз (невідома помилка): \ X \subset R ^n , в Неможливо розібрати вираз (невідома помилка): \ X \subset R^{(m+1)} . В цьому випадку Неможливо розібрати вираз (невідома помилка): \ Y - не викупла і незамкнута множина. Позначемо через Неможливо розібрати вираз (невідома помилка): \ co Y

випуклу множину Неможливо розібрати вираз (невідома помилка): \ Y 

. Задача (19.1) - (19.3) може бути записана в вигляді:

Неможливо розібрати вираз (невідома помилка): \ y_0 \rightarrow inf , (19.5)

Неможливо розібрати вираз (невідома помилка): \ y_i \le 0, i = 1,...m, , (19.6)

Неможливо розібрати вираз (невідома помилка): \ y = (y_0, y_1, ... , y_m)\in co Y , (19.6)


Згідно теореми Каретеодорі для побудови випуклої оболонти множини Неможливо розібрати вираз (невідома помилка): \ Y

із  Неможливо розібрати вираз (невідома помилка): \ m+1 
- вимірного простору потрібно загалом не більш Неможливо розібрати вираз (невідома помилка): \ m+2 
точок Неможливо розібрати вираз (невідома помилка): \ y \in  Y 

. Це значить, що Неможливо розібрати вираз (невідома помилка): \ co Y

може бути представлена в вигляді:

Неможливо розібрати вираз (невідома помилка): \ co Y= {} .