Відмінності між версіями «Задача з імовірнісніми обмеженнями. Загальний випадок.»
Рядок 3: | Рядок 3: | ||
*б) <math>P\{f(x)\leq{0}\}\geq{\alpha}</math> | *б) <math>P\{f(x)\leq{0}\}\geq{\alpha}</math> | ||
*в) <math>P\{f_{i_{k}}(x)\leq{0},i_{k}\subset{I_{k}}\}\geq{\alpha_{i_{k}}}</math> | *в) <math>P\{f_{i_{k}}(x)\leq{0},i_{k}\subset{I_{k}}\}\geq{\alpha_{i_{k}}}</math> | ||
− | де <math>f(x)=\{f_1(x),\ldots,f_m(x)\}</math> | + | де <math>f(x)=\{f_1(x),\ldots,f_m(x)\}</math> - вектор-функція, компоненти якої залежать від випадкових параметрів ω. |
+ | |||
+ | Нехай <math>~F_{ix}(t)</math> - безумовна функція розподілу випадкової величини <math>~f_{i}(x)</math> для заданого x, а <math>{F_{x}}(f_1,\ldots,f_m)</math> - сумісна функція розподілу системи випадкових величин <math>~f_{i}(x)</math> | ||
<math>F_{ix}(t)=\int\limits_{-\infty}^{\infty}{\ldots\int\limits_{-\infty}^{t}}{\ldots\int\limits_{-\infty}^{\infty}}\,d{F_{x}}(f_1,\ldots,f_m)</math> | <math>F_{ix}(t)=\int\limits_{-\infty}^{\infty}{\ldots\int\limits_{-\infty}^{t}}{\ldots\int\limits_{-\infty}^{\infty}}\,d{F_{x}}(f_1,\ldots,f_m)</math> | ||
+ | |||
+ | Припущення: | ||
+ | *а) залежності тільки між випадковими параметрами, що знаходяться в одному рядку; | ||
+ | *б) всі випадкові параметри можуть бути залежними; | ||
+ | *в) випадкові параметри, що відповідають функціям <math>f_{i_{k}}</math> для різних k незалежні між собою. | ||
+ | |||
+ | Позначимо через <math>g(x)=\{g_{1}(x),\ldots,g_{m}(x)\}</math>– детермінований вектор. область зміни компонент якого для кожного x обмежується діапазоном зміни відповідної випадкової величини <math>~f_{i}(x)</math>. | ||
<math>g_{i}(x)\in\{\inf{f_{i}(x)},\sup{f_{i}(x)}\}</math> | <math>g_{i}(x)\in\{\inf{f_{i}(x)},\sup{f_{i}(x)}\}</math> | ||
Рядок 12: | Рядок 21: | ||
<math>F_{x}(g(x))=P\{f_{1}(x)\leq{g_{1}(x)},\ldots,f_{m}(x)\leq{g_{m}(x)}\}=P\{f(x)\leq{g(x)}\}</math> | <math>F_{x}(g(x))=P\{f_{1}(x)\leq{g_{1}(x)},\ldots,f_{m}(x)\leq{g_{m}(x)}\}=P\{f(x)\leq{g(x)}\}</math> | ||
+ | |||
+ | Введені поняття дозволяють сформулювати детерміновані задачі, розв’язки яких співпадають з розв’язками відповідних стохастичних задач з ймовірнісними обмеженнями. Такі задачі називають детермінованими еквівалентами стохастичної задачі. | ||
Задача (б) | Задача (б) |
Версія за 13:31, 15 лютого 2013
Наведемо 3 форми запису ймовірнісних умов для загального випадку:
- а) Неможливо розібрати вираз (невідома помилка): P\{f_{i}(x)\leq{0}\}\geq{\alpha_{i}}
- б) Неможливо розібрати вираз (невідома помилка): P\{f(x)\leq{0}\}\geq{\alpha}
- в) Неможливо розібрати вираз (невідома помилка): P\{f_{i_{k}}(x)\leq{0},i_{k}\subset{I_{k}}\}\geq{\alpha_{i_{k}}}
де Неможливо розібрати вираз (невідома помилка): f(x)=\{f_1(x),\ldots,f_m(x)\}
- вектор-функція, компоненти якої залежать від випадкових параметрів ω.
Нехай Неможливо розібрати вираз (невідома помилка): ~F_{ix}(t)
- безумовна функція розподілу випадкової величини Неможливо розібрати вираз (невідома помилка): ~f_{i}(x) для заданого x, а Неможливо розібрати вираз (невідома помилка): {F_{x}}(f_1,\ldots,f_m) - сумісна функція розподілу системи випадкових величин Неможливо розібрати вираз (невідома помилка): ~f_{i}(x)
Неможливо розібрати вираз (невідома помилка): F_{ix}(t)=\int\limits_{-\infty}^{\infty}{\ldots\int\limits_{-\infty}^{t}}{\ldots\int\limits_{-\infty}^{\infty}}\,d{F_{x}}(f_1,\ldots,f_m)
Припущення:
- а) залежності тільки між випадковими параметрами, що знаходяться в одному рядку;
- б) всі випадкові параметри можуть бути залежними;
- в) випадкові параметри, що відповідають функціям Неможливо розібрати вираз (невідома помилка): f_{i_{k}}
для різних k незалежні між собою.
Позначимо через Неможливо розібрати вираз (невідома помилка): g(x)=\{g_{1}(x),\ldots,g_{m}(x)\} – детермінований вектор. область зміни компонент якого для кожного x обмежується діапазоном зміни відповідної випадкової величини Неможливо розібрати вираз (невідома помилка): ~f_{i}(x) .
Неможливо розібрати вираз (невідома помилка): g_{i}(x)\in\{\inf{f_{i}(x)},\sup{f_{i}(x)}\}
Неможливо розібрати вираз (невідома помилка): 0\leq{F_{ix}(g_{i}(x))=P\{f_{i}(x)\leq{g_{i}(x)}}\}\leq{1}
Неможливо розібрати вираз (невідома помилка): F_{x}(g(x))=P\{f_{1}(x)\leq{g_{1}(x)},\ldots,f_{m}(x)\leq{g_{m}(x)}\}=P\{f(x)\leq{g(x)}\}
Введені поняття дозволяють сформулювати детерміновані задачі, розв’язки яких співпадають з розв’язками відповідних стохастичних задач з ймовірнісними обмеженнями. Такі задачі називають детермінованими еквівалентами стохастичної задачі.
Задача (б)
Неможливо розібрати вираз (невідома помилка): f_{0}(x)\to\max
Неможливо розібрати вираз (невідома помилка): P\{f(x)\leq{0}\}\geq{\alpha}
Детермінований еквівалент цієї задачі:
Неможливо розібрати вираз (невідома помилка): f_{0}(x)\to{\max}
Неможливо розібрати вираз (невідома помилка): ~F_{x}(g(x))={\alpha}
Неможливо розібрати вираз (невідома помилка): g(x)\leq{0}