Відмінності між версіями «Двоїстий симплексний метод»
Матеріал з Вікі ЦДУ
Рядок 2: | Рядок 2: | ||
Як відомо кожній задачі лінійного програмування можна пос-тавити у відповідність двоїсту задачу. Теоремами двоїстості встановлено зв’язок між розв’язками прямої та двоїстої задач. Для знаходження розв’язку однієї зі спряжених задач можна пе-рейти до двоїстої і, використовуючи її оптимальний план, визна-чити оптимальний план початкової. | Як відомо кожній задачі лінійного програмування можна пос-тавити у відповідність двоїсту задачу. Теоремами двоїстості встановлено зв’язок між розв’язками прямої та двоїстої задач. Для знаходження розв’язку однієї зі спряжених задач можна пе-рейти до двоїстої і, використовуючи її оптимальний план, визна-чити оптимальний план початкової. | ||
− | Перехід до двоїстої задачі не обов’язковий. Легко помітити, що звичайна симплексна таблиця в стовпчиках містить початкову задачу, а в рядках — двоїсту. Оцінками плану прямої задачі є рядок <math>Delta_{j} =F_{j} -c_{j}</math> | + | Перехід до двоїстої задачі не обов’язковий. Легко помітити, що звичайна симплексна таблиця в стовпчиках містить початкову задачу, а в рядках — двоїсту. Оцінками плану прямої задачі є рядок <math>\Delta_{j} =F_{j} -c_{j}</math> |
minF=CX | minF=CX |
Версія за 09:14, 4 травня 2012
Двоїстий симплексний метод
Як відомо кожній задачі лінійного програмування можна пос-тавити у відповідність двоїсту задачу. Теоремами двоїстості встановлено зв’язок між розв’язками прямої та двоїстої задач. Для знаходження розв’язку однієї зі спряжених задач можна пе-рейти до двоїстої і, використовуючи її оптимальний план, визна-чити оптимальний план початкової. Перехід до двоїстої задачі не обов’язковий. Легко помітити, що звичайна симплексна таблиця в стовпчиках містить початкову задачу, а в рядках — двоїсту. Оцінками плану прямої задачі є рядок Неможливо розібрати вираз (невідома помилка): \Delta_{j} =F_{j} -c_{j}
minF=CX