Відмінності між версіями «Третя теорема двоїстості. Економічне тлумачення.»
Sergkyl (обговорення • внесок) |
Sergkyl (обговорення • внесок) |
||
Рядок 1: | Рядок 1: | ||
'''Теорема (третя теорема двоїстості)'''. | '''Теорема (третя теорема двоїстості)'''. | ||
− | Компоненти оптимального плану двоїстої задачі <math> | + | Компоненти оптимального плану двоїстої задачі <math>y_{i}^{*}</math> <math>(i=\overline{1,n})</math> дорівнюють значенням частинних похідних від цільової функції <math>(F(b_{1},b_{2}...,b_{m}))</math> за відповідними аргументами <math>b_{i}</math> ,<math>(i=\overline{1,n})</math> |
− | або <math>dF/db_i=y_{i}^{*}</math> , <math>i=1,2,...,m</math>(3.28) <br> | + | або <math>dF/db_i=y_{i}^{*}</math> , <math>(i=1,2,...,m)</math>(3.28) <br> |
'''Доведення.''' Розглянемо задачу лінійного програмування, подану в канонічній формі: | '''Доведення.''' Розглянемо задачу лінійного програмування, подану в канонічній формі: | ||
<math>maxF=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}</math>(3.29) <br> | <math>maxF=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}</math>(3.29) <br> | ||
<math>x_j\ge 0</math> ,<math>j=\overline{1,n}</math> (3.31) <br> | <math>x_j\ge 0</math> ,<math>j=\overline{1,n}</math> (3.31) <br> | ||
− | Двоїсту задачу до задачі (3.29)-(3.31) сформулюємо так: знайти оптимальний план <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})</math> ,за якого мінімізується значення <br> <math> Z=b_{1}y_{1}+b_{2}y_2{}+...+b_{m}y_{m}/math> (3.32) за умов:причому умова невід’ємності змінних <math>y_i^*</math><math>(i=\overline{1,n})</math> відсутня. <br> | + | Двоїсту задачу до задачі (3.29)-(3.31) сформулюємо так: знайти оптимальний план <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})</math> ,за якого мінімізується значення <br> <math>Z=b_{1}y_{1}+b_{2}y_2{}+...+b_{m}y_{m}/math> (3.32) за умов:причому умова невід’ємності змінних <math>y_i^*</math> <math>(i=\overline{1,n})</math> відсутня. <br> |
Позначимо <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})</math> — оптимальний план двоїстої задачі,<math>X^*=(x_{1}^{*},x_{2}^{*},...,x_{m}^{*})</math> — оптимальний план задачі (3.29)-(3.31). За першою теоремою двоїстості відомо, що:<math>max\ F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}=min\ Z=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}</math> <br> | Позначимо <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})</math> — оптимальний план двоїстої задачі,<math>X^*=(x_{1}^{*},x_{2}^{*},...,x_{m}^{*})</math> — оптимальний план задачі (3.29)-(3.31). За першою теоремою двоїстості відомо, що:<math>max\ F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}=min\ Z=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}</math> <br> | ||
або <math>F=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}</math>(3.34) <br> | або <math>F=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}</math>(3.34) <br> |
Версія за 19:08, 3 травня 2012
Теорема (третя теорема двоїстості). Компоненти оптимального плану двоїстої задачі Неможливо розібрати вираз (невідома помилка): y_{i}^{*}
Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n}) дорівнюють значенням частинних похідних від цільової функції Неможливо розібрати вираз (невідома помилка): (F(b_{1},b_{2}...,b_{m})) за відповідними аргументами Неможливо розібрати вираз (невідома помилка): b_{i} ,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})
або Неможливо розібрати вираз (невідома помилка): dF/db_i=y_{i}^{*}
, Неможливо розібрати вираз (невідома помилка): (i=1,2,...,m)
(3.28)
Доведення. Розглянемо задачу лінійного програмування, подану в канонічній формі:
Неможливо розібрати вираз (невідома помилка): maxF=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}
(3.29)
Неможливо розібрати вираз (невідома помилка): x_j\ge 0
,Неможливо розібрати вираз (невідома помилка): j=\overline{1,n} (3.31)
Двоїсту задачу до задачі (3.29)-(3.31) сформулюємо так: знайти оптимальний план Неможливо розібрати вираз (невідома помилка): Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})
,за якого мінімізується значення
Неможливо розібрати вираз (невідома помилка): Z=b_{1}y_{1}+b_{2}y_2{}+...+b_{m}y_{m}/math> (3.32) за умов:причому умова невід’ємності змінних <math>y_i^* Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n}) відсутня.
Позначимо Неможливо розібрати вираз (невідома помилка): Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})
— оптимальний план двоїстої задачі,Неможливо розібрати вираз (невідома помилка): X^*=(x_{1}^{*},x_{2}^{*},...,x_{m}^{*}) — оптимальний план задачі (3.29)-(3.31). За першою теоремою двоїстості відомо, що:Неможливо розібрати вираз (невідома помилка): max\ F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}=min\ Z=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}
або Неможливо розібрати вираз (невідома помилка): F=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}
(3.34)
Оскільки досліджується питання впливу зміни значень Неможливо розібрати вираз (невідома помилка): b_{i}
,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})
на Неможливо розібрати вираз (невідома помилка): F , то лінійну функцію (3.34) можна розглядати як функцію від аргументів Неможливо розібрати вираз (невідома помилка): b_{i}
,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n}) .Тоді частинні похідні за змінними Неможливо розібрати вираз (невідома помилка): b_{i} ,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})
будуть дорівнювати компонентам оптимального плану двоїстої задачі Неможливо розібрати вираз (невідома помилка): y_{i}^{*} :Неможливо розібрати вираз (невідома помилка): dF/db_{i}=y_{i}^{*} ,Неможливо розібрати вираз (невідома помилка): i=1,2,...,m
(3.35)
Однак дане твердження справедливе лише у тому разі, коли компоненти оптимального плану Неможливо розібрати вираз (невідома помилка): Y^*=(y_1^*,y_2^*,...,y_m^*)
залишаються постійними, а оскільки за першою теоремою двоїстості Неможливо розібрати вираз (невідома помилка): Y^*=C^*D^{-1}
, то значення двоїстих оцінок будуть незмінними лише за умови постійної структури оптимального плану початкової задачі.
Отже, рівності (3.35) справджуються лише за незначних змін Неможливо розібрати вираз (невідома помилка): b_i ,інакше суттєва зміна умов початкової задачі (правих частин системи обмежень (3.30) та цільової функції (3.32) приведе до зміни базису в оптимальному плані прямої задачі, а значить, і до іншого розв’язку двоїстої Неможливо розібрати вираз (невідома помилка): Y^{~}\ne Y^* .
Економічний зміст третьої теореми двоїстості. Двоїсті оцінки є унікальним інструментом, який дає змогу зіставляти непорівнянні речі. Очевидно, що неможливим є просте зіставлення величин, які мають різні одиниці вимірювання. Якщо взяти як приклад виробничу задачу, то цікавим є питання: як змінюватиметься значення цільової функції (може вимірюватися в грошових одиницях) за зміни обсягів різних ресурсів (можуть вимірюватися в тоннах, Неможливо розібрати вираз (невідома помилка): M^2
, люд./год, га тощо).Використовуючи третю теорему двоїстості, можна легко визначити вплив на зміну значення цільової функції збільшення чи зменшення обсягів окремих ресурсів: числові значення двоїстих оцінок показують, на яку величину змінюється цільова функція за зміни обсягу відповідного даній оцінці ресурсу