Відмінності між версіями «Антени для Wi-Fi-пристроїв»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 30: Рядок 30:
 
Якщо розібрати штатну штирову антену, то в більшості випадків виявиться, що довжина її активної частини складає всього 31 мм. Природно, така довжина обрана не випадково. Справа в тому, що частотний діапазон для Wi-Fi-пристроїв становить від 2400 до 2473 МГц. Відповідно довжина хвилі випромінювання варіюється від 12,12 до 12,49 см, а чверть довжини хвилі приблизно дорівнює 31 мм. Тобто в більшості випадків довжина штирьовий антени вибирається рівної чверті довжини хвилі випромінювання.
 
Якщо розібрати штатну штирову антену, то в більшості випадків виявиться, що довжина її активної частини складає всього 31 мм. Природно, така довжина обрана не випадково. Справа в тому, що частотний діапазон для Wi-Fi-пристроїв становить від 2400 до 2473 МГц. Відповідно довжина хвилі випромінювання варіюється від 12,12 до 12,49 см, а чверть довжини хвилі приблизно дорівнює 31 мм. Тобто в більшості випадків довжина штирьовий антени вибирається рівної чверті довжини хвилі випромінювання.
 
Тривимірна діаграма спрямованості, а також горизонтальна і вертикальна діаграми спрямованості такої антени показані на рис. 1.
 
Тривимірна діаграма спрямованості, а також горизонтальна і вертикальна діаграми спрямованості такої антени показані на рис. 1.
[[Файл:Stur_1a.gif]]
+
[[Файл: ]]
+
<table width="600" border="" align="center" cellspacing="0" cellpadding="4">
[[Файл: ]]
+
    <tr>
 
+
<td>[[Файл:Stur_1a.png|350px|thumb| Рис.1а.Тривимірна діаграма спрямованості (антена розташована уздовж осі Z) ]]</td>
 +
<td>[[Файл:Stur_1b.png|350px|thumb| Рис.1б.Вертикальна діаграма спрямованості ]]</td>
 +
<td> [[Файл:Stur_1c.png‎|350px|thumb| Рис.1с.Горизонтальна діаграма спрямованості ]] </td>
 +
  </tr>
 +
</table>
 
==Хвильовий канал (антени Уда-Яги)==
 
==Хвильовий канал (антени Уда-Яги)==
 
Яги антени використовуються для точка-точка мережі, а іноді і для точка-багатоточкових. Антена була спочатку розроблена для радіо-частоти в 1926 році, але в даний час використовується в бездротовому зв'язку.
 
Яги антени використовуються для точка-точка мережі, а іноді і для точка-багатоточкових. Антена була спочатку розроблена для радіо-частоти в 1926 році, але в даний час використовується в бездротовому зв'язку.
 
Антена «хвильовий канал», відома також як антена Уда-Яги, або антена Яги, це антена, що складається з розташованих уздовж лінії випромінювання паралельно один одному активного і декількох пасивних вібраторів. Хвильовий канал відноситься до класу антен біжучої хвилі. У радянській літературі застосовувалося назву «хвильовий канал», воно і залишилося поширеним в російськомовній літературі, в англомовній літературі використовують назви по іменах винахідників.
 
Антена «хвильовий канал», відома також як антена Уда-Яги, або антена Яги, це антена, що складається з розташованих уздовж лінії випромінювання паралельно один одному активного і декількох пасивних вібраторів. Хвильовий канал відноситься до класу антен біжучої хвилі. У радянській літературі застосовувалося назву «хвильовий канал», воно і залишилося поширеним в російськомовній літературі, в англомовній літературі використовують назви по іменах винахідників.
 
<h4><font color=Mediumblue>'''Пристрій і принцип дії'''</font></h4>
 
<h4><font color=Mediumblue>'''Пристрій і принцип дії'''</font></h4>
[[Файл:Uda-Yagi.png|350px|thumb|right|Антена «хвильовий канал», схема]]
+
[[Файл:Uda-Yagi.png|350px|thumb|right|Антена «хвильовий канал», схема]]  
 
Як вже згадувалося, антена складається з розташованих на [[траверсі]] (на малюнку - Т) активного (A) і ряду пасивних вібраторів - [[рефлекторів]] (R), розташованих відносно напряму випромінювання за активним вібратором, і [[директорів]] (D), розташованих перед активним вібратором. Найчастіше застосовується один рефлектор, число директорів змінюється від нуля до десятків. Активний вібратор має довжину близько 0.5 λ, рефлектор довжину трохи більшу 0.5 λ, директори мають довжину, меншу 0.5 λ. Відстані від активного вібратора до рефлектора і до першого директора становлять близько 0.25 λ.
 
Як вже згадувалося, антена складається з розташованих на [[траверсі]] (на малюнку - Т) активного (A) і ряду пасивних вібраторів - [[рефлекторів]] (R), розташованих відносно напряму випромінювання за активним вібратором, і [[директорів]] (D), розташованих перед активним вібратором. Найчастіше застосовується один рефлектор, число директорів змінюється від нуля до десятків. Активний вібратор має довжину близько 0.5 λ, рефлектор довжину трохи більшу 0.5 λ, директори мають довжину, меншу 0.5 λ. Відстані від активного вібратора до рефлектора і до першого директора становлять близько 0.25 λ.
  

Версія за 22:18, 12 грудня 2010

Характеристики антен

Однією з найважливіших характеристик антен є коефіцієнт посилення. Часто назва цього параметра призводить до помилкового припущення, що антени здатні посилювати сигнал. Насправді це не так - якщо потужність передавача, наприклад складає 50 мВт, то яку б антену не поставили, потужність передаваного сигналу буде такою ж. Річ у тому, що усі антени подібного роду є пасивними пристроями і брати енергію для посилення передаваного сигналу їм просто нема звідки.Далі розглянемо з такими важливими поняттями, як ідеальний ізотропний випромінювач і діаграма спрямованості антени.

Ізотропний випромінювач

Антени випромінюють енергію у вигляді електромагнітних хвиль на всіх напрямках. Проте ефективність передачі сигналу для різних напрямів може бути неоднакова і характеризується діаграмою спрямованості. Для оцінки ефективності передачі сигналу по різних напрямах введено поняття ізотропного випромінювача, або ізотропної антени. Ізотропний випромінювач - це ідеальне точкове джерело електромагнітних хвиль, випромінююче рівномірно по усіх напрямах. Якщо уявити собі сферу з центром, співпадаючим з ізотропним випромінювачем, то щільність випромінюваної ізотропним джерелом енергії буде однакова в будь-якій точці такої сфери. Тому говорять що ізотропний випромінювач утворює рівномірне по щільності енергії поле сферичної форми. У природі ізотропних випромінювачів не існує. Кожна передавальна антена, навіть найпростіша, випромінює енергію нерівномірно - в якомусь напрямі її випромінювання максимальне. Ізотропний же випромінювач розглядається виключно як деякий еталонний випромінювач з яким зручно порівнювати усі інші антени.

Діаграма спрямованості антени

Спрямовані властивості антен прийнято визначати залежністю напруженості випромінюваного антеною поля від напряму. Графічне представлення цієї залежності називається діаграмою спрямованості антени. Тривимірна діаграма спрямованості зображається як поверхня, що описується радіус-вектором, що виходить з початку координат, довжина якого в тому або іншому напрямі пропорційна енергії, випромінюваною антеною в цьому напрямі. Окрім тривимірних діаграм часто розглядають і двовимірні, які будуються для горизонтальної і вертикальної площин. При цьому діаграма спрямованості має вигляд замкнутої лінії в полярній системі координат, побудованій так, щоб відстань від антени (центр діаграми) до будь-якої точки діаграми спрямованості було прямо пропорціонально енергії, випромінюваною антеною в цьому напрямі.
Для ізотропної антени, випромінюючої енергію однаково по усіх напрямах, діаграма спрямованості є сферою, центр якої співпадає з положенням ізотропного випромінювача а горизонтальна і вертикальна діаграми спрямованості ізотропного випромінювача мають форму кола.
Для спрямованих антен на діаграмі спрямованості можна виділити так звані пелюстки, тобто напрями переважного випромінювання. Напрям максимального випромінювання антен називається головним напрямом; відповідна йому пелюстка - головним; інші пелюстки - бічними, а пелюстка випромінювання убік, зворотну головному напряму називається задньою пелюсткою діаграми спрямованості антени. Напрями, в яких антена не приймає і не випромінює, називаються нулями діаграми спрямованості.
Діаграму спрямованості також прийнято характеризувати шириною, під якою розуміють кут, усередині якого коефіцієнт посилення зменшується по відношенню до максимального не більше ніж на 3 дБ. Практично завжди коефіцієнт посилення і ширина діаграми взаємозв'язані: чим більше посилення, тим вже діаграма, і навпаки.

Коефіцієнт посилення антени

Отже, після того, як отримали уявлення про такі важливі поняття, як ідеальний ізотропний точковий випромінювач і діаграма спрямованості антени, можна сформулювати поняття коефіцієнта посилення антени. Коефіцієнт посилення антени визначає, наскільки децибел щільність потоку енергії, що випромінюється антеною в певному напрямі, більше щільності потоку енергії, який був би зафіксований у разі використання ізотропної антени. Коефіцієнт посилення антени вимірюється в так званих ізотропних децибелах (дБи або dBi).
Нагадаємо, що у фізиці потужність прийнято вимірювати у ватах (Вт). Проте в теорії зв'язку для виміру потужності сигналу частіше використовують децибели (дБ). Ця одиниця виміру є логарифмічною і може використовуватися лише для порівняння однойменних фізичних величин. Приміром, якщо порівнюються два значення A і B однієї і тієї ж фізичної величини, то відношення A/B показує, в скільки разів одна величина більше іншої. Якщо ж розглянути десятковий логарифм того ж самого відношення, то ми отримаємо порівняння цих величин виражене в белах (Б), а вираження 10lg(A/B) визначає порівняння цих величин в децибелах (дБ). Наприклад, якщо говорять, що одна величина більше іншої на 20 дБ, то це означає, що вона більше іншої в 100 разів.
Децибели використовуються не лише для порівняння величин, але і для вираження абсолютних значень. Для цього як величина, з якою виробляється порівняння, набуває деякого еталонного значення. Наприклад щоб виразити абсолютне значення потужності сигналу в децибелах, за еталон береться потужність в 1 мВт і рівень потужності порівнюється в децибелах з потужністю в 1 мВт. Ця одиниця виміру дістала назву децибел на міліватт (дБм) і показує на скільки децибел потужність вимірюваного сигналу більше потужності в 1 мВт.
Неважко розрахувати, що потужності 100 мВт відповідає потужність 20 дБм, а потужності 50 мВт - потужність 17 дБм. Так, якщо коефіцієнт посилення антени в заданому напрямі складає 5 dBi, то це означає що в цьому напрямі потужність випромінювання на 5 дБ (у 3,16 разу) більша, ніж потужність випромінювання ідеальної ізотропної антени. Природно, збільшення потужності сигналу в одному напрямі спричиняє за собою зменшення потужності в інших напрямах. Звичайно, коли говорять, що коефіцієнт посилення антени складає 10 dBi, то мається на увазі напрям, в якому досягається максимальна потужність випромінювання (головна пелюстка діаграми спрямованості).
Знаючи коефіцієнт посилення антени і потужність передавача неважко розрахувати потужність сигналу у напрямі головної пелюстки діаграми спрямованості. Так, при використанні безпровідною точкою доступу з потужністю передавача 20 dBm (100 мВт) і спрямованої антени з коефіцієнтом посилення 10 dBi потужність сигналу у напрямі максимального посилення складе 20 dBm + 10 dBi = 30 dBm (1000 мВт), тобто в 10 разів більше, ніж у разі застосування ізотропної антен.

Типи антен для Wi-Fi-пристроїв

У плані використання усі антени для Wi-Fi-пристроїв можна умовно розділити на два великі класи: антени для зовнішнього (outdoor) і для внутрішнього застосування (indoor). Відрізняються ці антени передусім своїми габаритами і коефіцієнтом посилення. Природно антени для зовнішнього використання більше по розмірах і передбачають форму кріплення або до стіни будинку, або до вертикального стовпа. Високий коефіцієнт посилення в таких антенах досягається за рахунок малої ширини діаграми спрямованості (головної пелюстки). Зовнішні антени застосовуються, як правило, для зв'язку двох безпровідних мереж, що знаходяться на великій відстані один від одного. Дві такі антени встановлюються в зоні прямої видимості, і в даному випадку важливо щоб кожна з них знаходилася в зоні головної пелюстки діаграми спрямованості іншої антени. Антени для внутрішнього використання менше по розмірах і мають нижчий коефіцієнт посилення. Такі антени або встановлюються на столі, або кріпляться до стіни або безпосередньо до точки доступу. До самої точки доступу антени можуть під'єднуватися або безпосередньо, або за допомогою кабелю. При цьому для під'єднування антени або кабелю до точки доступу призначений спеціальний мініатюрний SMA-роз'їм . На точках доступу застосовується роз'єм типу Male а на самій антені або антенному кабелі - роз'єм типу Female. Для з'єднання антени зовнішнього застосування з кабелем можуть використовуватися і інші типи високочастотних роз'ємів - найчастіше це роз'їм N-типу.

Штирьова антена [1]

Усі точки доступу стандарту 802.11b/g комплектуються штатними мініатюрними штирьовими антенами, які можуть бути як знімними, так і стаціонарними. Штирьова антена є найпростішим варіантом антени. Її часто називають також несиметричним вібратором. Якщо штирьову антену розташувати вертикально, то в горизонтальній площині вона випромінюватиме енергію на всі боки рівномірно, тому в горизонтальній площині така антена є всенаправленою і природно, говорити про переважне випромінювання в певному напрямі не доводиться. В той же час у вертикальній площині така антена випромінює нерівномірно. Зокрема, випромінювання уздовж осі антени взагалі відсутнє. Саме тому навіть у разі простої штирьової антени можна виділити напрями, відповідні максимальному посиленню. Для штирьових антен максимальне посилення досягається в площині, перпендикулярній антені і що проходить через її середину.
Якщо розібрати штатну штирову антену, то в більшості випадків виявиться, що довжина її активної частини складає всього 31 мм. Природно, така довжина обрана не випадково. Справа в тому, що частотний діапазон для Wi-Fi-пристроїв становить від 2400 до 2473 МГц. Відповідно довжина хвилі випромінювання варіюється від 12,12 до 12,49 см, а чверть довжини хвилі приблизно дорівнює 31 мм. Тобто в більшості випадків довжина штирьовий антени вибирається рівної чверті довжини хвилі випромінювання. Тривимірна діаграма спрямованості, а також горизонтальна і вертикальна діаграми спрямованості такої антени показані на рис. 1.

Рис.1а.Тривимірна діаграма спрямованості (антена розташована уздовж осі Z)
Рис.1б.Вертикальна діаграма спрямованості
Рис.1с.Горизонтальна діаграма спрямованості

Хвильовий канал (антени Уда-Яги)

Яги антени використовуються для точка-точка мережі, а іноді і для точка-багатоточкових. Антена була спочатку розроблена для радіо-частоти в 1926 році, але в даний час використовується в бездротовому зв'язку. Антена «хвильовий канал», відома також як антена Уда-Яги, або антена Яги, це антена, що складається з розташованих уздовж лінії випромінювання паралельно один одному активного і декількох пасивних вібраторів. Хвильовий канал відноситься до класу антен біжучої хвилі. У радянській літературі застосовувалося назву «хвильовий канал», воно і залишилося поширеним в російськомовній літературі, в англомовній літературі використовують назви по іменах винахідників.

Пристрій і принцип дії

Антена «хвильовий канал», схема

Як вже згадувалося, антена складається з розташованих на траверсі (на малюнку - Т) активного (A) і ряду пасивних вібраторів - рефлекторів (R), розташованих відносно напряму випромінювання за активним вібратором, і директорів (D), розташованих перед активним вібратором. Найчастіше застосовується один рефлектор, число директорів змінюється від нуля до десятків. Активний вібратор має довжину близько 0.5 λ, рефлектор довжину трохи більшу 0.5 λ, директори мають довжину, меншу 0.5 λ. Відстані від активного вібратора до рефлектора і до першого директора становлять близько 0.25 λ.

Випромінювання антени можна розглядати як суму випромінювань всіх складових її вібраторів. Струм, наведений випромінюванням активного вібратора в рефлекторі, наводить у ньому напругу. Для рефлектора, опір якого носить індуктивний характер за рахунок довжини, більшою 0,5 λ, напруга відстає по фазі від напруги в активному вібраторі на 270 градусів. У результаті випромінювання активного вібратора і рефлектора в напрямку рефлектора складається в протифазі, а в напрямку активного вібратора - у фазі, що приводить до посилення випромінювання в напрямку активного вібратора приблизно вдвічі. Аналогічно рефлектора працюють директори, однак через місткості характеру їх опору (що визначається їх меншою довжиною) випромінювання посилюється в напрямку директорів. Кожен додатковий рефлектор або директор дають надбавку посилення, але меншу, ніж попередній рефлектор і директор, причому для рефлектора ефект ослаблення дії додаткових елементів набагато більш виражений, тому більш одного рефлектора застосовують досить рідко.

Характеристики

Трьохелементний хвильовий канал має посилення близько 5-6 dBd, шестиелементний - близько 9 dBd, десятиелементний - близько 11 dB. Для довгих (більше 15 елементів) антен можна вважати, що посилення збільшується приблизно на 2.2 dB на кожне подвоєння довжини антени. Антена має гарний спрямованою дією. Антена досить проста, має відносно невелику масу, за рахунок відсутності суцільних поверхонь забезпечується мала парусність.

Застосування

Антени «хвильовий канал» широко застосовуються в якості приймальних телевізійних, як прийомних і в системах бездротової передачі даних, в радіоаматорського зв'язку, в інших системах зв'язку, в радіолокації. Широкому їх поширенню сприяють висока посилення, хороша спрямованість, компактність, простота, невелика маса. Антену застосовують на діапазонах, починаючи з коротких хвиль, в діапазонах метрових і дециметрових хвиль і на більш високих частотах, на НВЧ-діапазонах.

Історія

Антена хвильовий канал була винайдена в 1926 р. Сінтаро Удо у співпраці з Хідецугу Яги, з університету Тохоку, розташованого в м. Сендай в Японії. Яги опублікував перший опис антени на англійській мові, у зв'язку з чим вона стала асоціюватися з його ім'ям. Яги, втім, завжди згадував принципово важливу роль Удо у винаході антени, у зв'язку з чим правильною назвою має бути «антена Уда-Яги». Антена отримала широке поширення під час другої світової війни в якості антени радарів ППО завдяки її простоті і хорошою спрямованості. Японські військові вперше дізналися про антену після битви при Сінгапурі, коли до них потрапили записки англійського інженера радара, згадуваного «антену яги». Японські офіцери розвідки не зрозуміли в цьому контексті, що Яги - це ім'я. Незважаючи на те, що антена була винайдена в Японії, вона залишалася невідомою більшості японських розробників радарів протягом великої частини військового періоду, через суперечності між флотом і армією.

Параболічних або супутникові антени

Параболічних або супутникові антени є спрямованими антенами, які передають і отримують сигнали і використовуються для міжміського і "точка-точка з'єднання. Ці типи антен вузьких пелюстки і повинні бути розраховані правильно, щоб відправляти і отримувати сигнали. Параболічні антени ідеально підходять для телекомунікації і підвищення рівня безпеки.

Backfire Антени

Backfire антен малого спрямована антена, схожий на антену. Антена має діаметр 10 дюймів і рекомендується для точка-багатоточка або точки до точці системи.

Література

1. Направленные антенны для беспроводных устройств стандарта 802.11b
2. Принципы построения простых беспроводных сетей ориентированных на домашнее использование
3.