Відмінності між версіями «Користувач:Таня Запорожчук»
652469 (обговорення • внесок) (→Мої роботи) |
652469 (обговорення • внесок) (→Мої роботи) |
||
Рядок 23: | Рядок 23: | ||
Розглянемо тепер попит <math>b_j (w)</math> розподілений дискретно. В цьому випадку детермінований еквівалент стохастичної транспортної задачі виявляється задачею лінійного програмування. | Розглянемо тепер попит <math>b_j (w)</math> розподілений дискретно. В цьому випадку детермінований еквівалент стохастичної транспортної задачі виявляється задачею лінійного програмування. | ||
Припустимо, що попит <math>b_j</math> в j-му пункті споживані приймає значення <math>b_jk</math> з ймовірностями <math>p_jk</math> (k=1,…,s_j)</math>. Нехай <math>q_j^((-))</math> і <math>q_j^((+))</math> - штраф за дефіцит і витрати зберігання одиниці продукту. | Припустимо, що попит <math>b_j</math> в j-му пункті споживані приймає значення <math>b_jk</math> з ймовірностями <math>p_jk</math> (k=1,…,s_j)</math>. Нехай <math>q_j^((-))</math> і <math>q_j^((+))</math> - штраф за дефіцит і витрати зберігання одиниці продукту. | ||
− | Введемо допоміжні зміні <math>u_jk і ϑ_jk</math>, рівні відповідні величини дефіциту (і надлишкового продукту) в j-м пункті споживання при реалізації k-го варіанту попиту, тобто при <math>b_j=b_jk</math>. | + | Введемо допоміжні зміні <math>u_jk</math> і <math>ϑ_jk</math>, рівні відповідні величини дефіциту (і надлишкового продукту) в j-м пункті споживання при реалізації k-го варіанту попиту, тобто при <math>b_j=b_jk</math>. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Версія за 20:05, 14 травня 2018
Про себе
Студентка 17 групи фізико-математичного факультету Кіровоградського педагогічного університету імені В. Винниченка
Мої інтереси
Я займаюся спортом, а також хочу навчитися вишивати та професійно кататися на ковзанах.
Проекти в яких беру участь
Інформатика та програмування (27 група)
Мої роботи
Проект з інформатики: "Екологія" - №17 групи ФМФ, 2014.
CТОХАСТИЧНА ТРАНСПОРТНА ЗАДАЧА. ДИСКРЕТНИЙ РОЗПОДІЛ ПОПИТУ. 1 модуль Транспортна задача — задача про оптимальний план перевезення продуктів із пунктів відправлення до пунктів споживання за умови, що витрати на перевезення будуть мінімальними. Стохастична транспортна задача – задача про оптимальний план перевезення продуктів із пунктів відправлення до пунктів споживання за умови, що витрати на перевезення будуть мінімальними та попит на продукцію буде випадковим. Розглянемо тепер попит Неможливо розібрати вираз (невідома помилка): b_j (w)
розподілений дискретно. В цьому випадку детермінований еквівалент стохастичної транспортної задачі виявляється задачею лінійного програмування.
Припустимо, що попит Неможливо розібрати вираз (невідома помилка): b_j
в j-му пункті споживані приймає значення Неможливо розібрати вираз (невідома помилка): b_jk з ймовірностями Неможливо розібрати вираз (невідома помилка): p_jk (k=1,…,s_j)</math>. Нехай Неможливо розібрати вираз (невідома помилка): q_j^((-)) і Неможливо розібрати вираз (невідома помилка): q_j^((+)) - штраф за дефіцит і витрати зберігання одиниці продукту.
Введемо допоміжні зміні Неможливо розібрати вираз (невідома помилка): u_jk
і Неможливо розібрати вираз (невідома помилка): ϑ_jk
, рівні відповідні величини дефіциту (і надлишкового продукту) в j-м пункті споживання при реалізації k-го варіанту попиту, тобто при Неможливо розібрати вираз (невідома помилка): b_j=b_jk
.