Відмінності між версіями «Стаття проекту "Урок майбутнього!" Гелевер Ірина»
2495630 (обговорення • внесок) |
2495630 (обговорення • внесок) |
||
Рядок 75: | Рядок 75: | ||
*4.Дано точки A(0'-4;5) і B(6;8;−1). Знайдіть координати точки, симетричної середині відрізка AB відносно: а) точки O(0;-2;2); б) осі аплікат; в) площини Oxy. | *4.Дано точки A(0'-4;5) і B(6;8;−1). Знайдіть координати точки, симетричної середині відрізка AB відносно: а) точки O(0;-2;2); б) осі аплікат; в) площини Oxy. | ||
''Розв’язання:'' а) Знайдемо середину відрізка AB — точку <math>C(x_{1};y_{1};z_{1}).</math> <br> | ''Розв’язання:'' а) Знайдемо середину відрізка AB — точку <math>C(x_{1};y_{1};z_{1}).</math> <br> | ||
− | <math>x_{1}=\frac{0+6}{2}=3;</math> <math>y_{1}=\frac{-4+8}{2}=2;</math> <math>z_{1}=\frac{5-1}{2}=2.</math> <math>C(3;2;2).</math | + | <math>x_{1}=\frac{0+6}{2}=3;</math> <math>y_{1}=\frac{-4+8}{2}=2;</math> <math>z_{1}=\frac{5-1}{2}=2.</math> <math>C(3;2;2).</math> Оскільки точка <math>C(x_{2};y_{2};z_{2})</math> симетрична точці С відносно точки O(0;-2;2), то точка O — середина відрізка CC'. Тоді |
<math>\frac{x_{2}+3}{2}=0;</math> <math>x_{2}=-3</math> і точка C' має координати: <math>\frac{y_{2}+2}{2}=-2;</math> <math>y_{2}=-6</math> <math>\frac{z_{2}+2}{2}=2;</math> <math>z_{2}=2.</math> | <math>\frac{x_{2}+3}{2}=0;</math> <math>x_{2}=-3</math> і точка C' має координати: <math>\frac{y_{2}+2}{2}=-2;</math> <math>y_{2}=-6</math> <math>\frac{z_{2}+2}{2}=2;</math> <math>z_{2}=2.</math> | ||
Версія за 20:18, 9 квітня 2018
Зміст
Навчальний предмет
Геометрія
Вік учнів, клас
16-17 років, 11 клас
Тема уроку
ПЕРЕТВОРЕННЯ СИМЕТРІЇ У ПРОСТОРІ
Тип уроку
- Урок засвоєння нових знань;
Мета уроку
- Навчальна мета: сформувати в учнів знання про перетворення симетрії у просторі, вміння застосовувати отримані знання під час розв’язування задач;
- Розвивальна мета: розвивати просторові уявлення, пам’ять, логічне мислення;
- Виховна мета: виховувати наполегливість, працьовитість.
Хід уроку
1. ОРГАНІЗАЦІЙНИЙ ЕТАП
Привітання з учнями. Перевірка готовності учнів до уроку. Налаштування на роботу.
Блог учителя "Цікава шкільна геометрія"
2. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ
На дошці записано кілька «домашніх задач» з навмисно допущеними помилками. Учням необхідно віднайти та виправити ці помилки.
3. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ
Фронтальна бесіда:
- Назвіть види перетворень фігур на площині.
- Назвіть види перетворень симетрії на площині.
- Які дві точки називають симетричними відносно даної точки на площині? відносно прямої на площині?
- Назвіть фігури, які мають центр симетрії.
- Які відомі вам фігури на площині мають вісь симетрії?
- Які властивості має перетворення симетрії на площині?
4. ФОРМУЛЮВАННЯ ТЕМИ, МЕТИ Й ЗАВДАНЬ УРОКУ; МОТИВАЦІЯ НАВЧАЛЬНОЇ ДІЯЛЬНОСТІ
Чи часто ви дивитесь у дзеркало? А чи знаєте ви, що й під час розглядання свого відображення у дзеркалі маєте справу з математикою, а саме з одним із видів просторової симетрії. Сьогодні ми поговоримо про це.
5. СПРИЙНЯТТЯ та УСВІДОМЛЕННЯ НОВОГО МАТЕРІАЛУ
- Поняття симетрії відносно точки у просторі.
Точки A і A' називають симетричними відносно точки O, якщо точка O — середина відрізка AA'.
Перетворенням симетрії відносно точки O (центральною симетрією) називають таке перетворення, при якому кожна точка даної фігури
переходить у точку, симетричну їй відносно точки O.
Якщо симетрія відносно точки O переводить дану фігуру в ту саму фігуру, то таку фігуру називають центральносиметричною, а точку O — її центром симетрії. Прикладом такої фігури є прямокутний паралелепіпед. Його центр симетрії — точка перетину діагоналей паралелепіпеда.
- Поняття симетрії відносно прямої у просторі.
Точки A і A' називають симетричними відносно прямої l, якщо ця пряма перпендикулярна до відрізка AA' і проходить через його середину.
Перетворенням симетрії відносно прямої (осьовою симетрією) нназивають таке перетворення, при якому кожна точка фігури переходить у точку, симетричну їй відносно даної прямої. Наприклад, куб має вісь симетрії, причому не одну.
- Поняття симетрії відносно площини у просторі.
Точки A і A' називають симетричними відносно площини α, якщо ця площина перпендикулярна до відрізка AA' і проходить
через його середину (рис. 1). Точки площини α вважаються симетричними самі до себе. При цьому площину α називають площиною симетрії.
Перетворенням симетрії відносно площини α називають таке перетворення, при якому кожна точка даної фігури переходить
у точку, симетричну їй відносно площини α.
Якщо перетворення симетрії відносно площини α переводитьдану фігуру в себе, то таку фігуру називають симетричною відносно
площини α. Наприклад, куля є симетричною відносно будь-якої площини, яка проходить через її центр.
Учитель пропонує учням ознайомитися з таблицею, заздалегідь підготовленою на дошці, і сформувати уявлення про те, що
точки, симетричні точці A(x;y;z) відносно початку координат,координатних осей і площин, мають такі координати.
6. ОСМИСЛЕННЯ НОВОГО МАТЕРІАЛУ
Розв'язання задач:
- 1. Точки A і B симетричні відносно точки C. Знайдіть координати точки C, якщо A(5;-3;4) і B(-3;1;-2).
(Відповідь: C(1;-1;1)).
- 2. Точку M (a;b;c) послідовно симетрично відобразили відносно координатних площин Oxy, Oxz, Oyz. Доведіть, що отримана при цьому точка M' симетрична точці M відносно початку координат.
Доведення: Точка M (a;b;c) при симетрії відносно площини Oxy переходить у точку N (a;b;-c). Точка N (a;b;-c) − при симетрії відносно площини Oxz переходить у точку K (a;-b;-c).Точка K (a;-b;-c) при симетрії відносно площини Oyz переходить у точку M' (-a;-b;-c). Середина відрізка MM' має координати (0;0;0). Отже, початок координат — центр симетрії точок M і M'.
- 3.Точка A(5;2;3) належить колу із центром O. Знайдіть радіус кола, якщо при симетрії відносно осі ординат центр кола переходить у точку O′(−2;1;1).
Розв’язання: Оскільки точка O при симетрії відносно осі ординат перейшла в точку O′(−2;1;1), то точка O має координати:
O(2;1;−1).
Неможливо розібрати вираз (невідома помилка): R^2=OA^2=(5-2)^2+(2-1)^2+(3+1)^2=9+1+16;
Неможливо розібрати вираз (невідома помилка): R=\sqrt{26}
(Відповідь:Неможливо розібрати вираз (невідома помилка): R=\sqrt{26}
).
- 4.Дано точки A(0'-4;5) і B(6;8;−1). Знайдіть координати точки, симетричної середині відрізка AB відносно: а) точки O(0;-2;2); б) осі аплікат; в) площини Oxy.
Розв’язання: а) Знайдемо середину відрізка AB — точку Неможливо розібрати вираз (невідома помилка): C(x_{1};y_{1};z_{1}).
Неможливо розібрати вираз (невідома помилка): x_{1}=\frac{0+6}{2}=3;
Неможливо розібрати вираз (невідома помилка): y_{1}=\frac{-4+8}{2}=2; Неможливо розібрати вираз (невідома помилка): z_{1}=\frac{5-1}{2}=2. Неможливо розібрати вираз (невідома помилка): C(3;2;2). Оскільки точка Неможливо розібрати вираз (невідома помилка): C(x_{2};y_{2};z_{2}) симетрична точці С відносно точки O(0;-2;2), то точка O — середина відрізка CC'. Тоді
Неможливо розібрати вираз (невідома помилка): \frac{x_{2}+3}{2}=0;
Неможливо розібрати вираз (невідома помилка): x_{2}=-3 і точка C' має координати: Неможливо розібрати вираз (невідома помилка): \frac{y_{2}+2}{2}=-2; Неможливо розібрати вираз (невідома помилка): y_{2}=-6 Неможливо розібрати вираз (невідома помилка): \frac{z_{2}+2}{2}=2; Неможливо розібрати вираз (невідома помилка): z_{2}=2.
7. ПІДБИТТЯ ПІДСУМКІВ УРОКУ
Методичні та дидактичні матеріали
- Блог учителя з посиланнями на матеріали до уроку "Цікава шкільна геометрія"
- Стінгазета "КАЛЕЙДОСКОП"
- Буклет "Головоломки на складання симетричних фігур"
- Ментальні карти (Coogle, MindMeister, Minmodo тощо)
- Тест для перевірки знань учнів (до 10 тестових завдань) (Google Форми)
- Ігри для учнів: Кросворд, Пазл
- Електронний журнал
- Методичні або дидактичні матеріали до уроку, що зроблені у ППЗ із фаху (словники, стрічка часу, обчислювальні програми, геосервіси тощо)
Інформаційні ресурси
Друковані джерела
- Александров А.Д. "Стереометрия. Геометрия в пространстве"
- Шарль П'єр Франсуа Дюпен "Геометрія мистецтв і ремесел"
- Герман Вейль "Симметрия"
Відеоматеріали
- ...
- ...
- ...
Електронні ресурси
Автор статті
Студентка фізико-математичного факультету, групи МІ17М, спеціальність математика
Центральноукраїнський державний педагогічний університет імені Володимира Винниченка