Відмінності між версіями «Інтеграл Фур'є»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 10: Рядок 10:
 
де коефіцієнти Фур’є  <math>a_n</math> та  <math>b_n</math>  обчислюються за такими формулами:
 
де коефіцієнти Фур’є  <math>a_n</math> та  <math>b_n</math>  обчислюються за такими формулами:
  
<math>a_0= \frac1{l} \int\limits_{-l}^{l} f(x))dx
+
<math>a_0= \frac1{l} \int\limits_{-l}^{l} f(x)dx
  
  
Рядок 21: Рядок 21:
  
  
<math>f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]=\frac1{2}{l} \int\limits_{-l}^{l} f(x))dx</math>+\sum_{n=1}^{\infty}
+
<math>f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]=\frac1{2}{l} \int\limits_{-l}^{l} f(x))dx+\sum_{n=1}^{\infty}

Версія за 12:23, 20 травня 2010

Жан Батист Жозеф Фурье (Jean Baptiste Joseph Fourier}; 21 марта 1768, Осер, Франция — 16 мая 1830, Париж), французский математик и физик.

Научные достижения

  • Монографии «Аналитическая теория тепла», в которой был дан вывод уравнения теплопроводности в твёрдом теле, и разработка методов его интегрирования при различных граничных условиях. Метод Фурье состоял в представлении функций в виде тригонометрических рядов Фурье.
  • Нашёл формулу представления функции с помощью интеграла, играющую важную роль в современной математике.

Интеграл Фур'є

Розглянем функцію  f(x) визначену на проміжку [-infty,infty]

Розглянем [-l,l] Неможливо розібрати вираз (невідома помилка): f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]


де коефіцієнти Фур’є Неможливо розібрати вираз (невідома помилка): a_n

та  Неможливо розібрати вираз (невідома помилка): b_n
 обчислюються за такими формулами:

Неможливо розібрати вираз (невідома помилка): a_0= \frac1{l} \int\limits_{-l}^{l} f(x)dx a_n= \frac1{l} \int\limits_{-l}^{l} f(x)\cos(\frac{nx\pi}{l})dx \qquad b_n= \frac1{l} \int\limits_{-l}^{l} f(x)\sin(\frac{nx\pi}{l})dx



Неможливо розібрати вираз (невідома помилка): f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]=\frac1{2}{l} \int\limits_{-l}^{l} f(x))dx+\sum_{n=1}^{\infty}