Відмінності між версіями «Розв’язання рівняння Беселя. Функції Беселя першого роду»
Рядок 6: | Рядок 6: | ||
Найбільш часто використовуються функції Бесселя цілих порядків. | Найбільш часто використовуються функції Бесселя цілих порядків. | ||
− | Хоча <math>\alpha</math> и <math>(-\alpha)</math> породжують однакові рівняння, зазвичай домовляються про те, щоб їм відповідали різні функції (це робиться, наприклад, для того, щоб функція Бесселя була [[гладка функція | гладкою]]по <math>\alpha</math>). | + | Хоча <math>\alpha</math> и <math>(-\alpha)</math> породжують однакові рівняння, зазвичай домовляються про те, щоб їм відповідали різні функції (це робиться, наприклад, для того, щоб функція Бесселя була [[гладка функція | гладкою]] по <math>\alpha</math> ). |
Функції Бесселя вперше були визначені [[Швейцарія | швейцарським]] математиком [[Бернуллі, Данило | Даніелем Бернуллі]], а названі на честь [[Бесселя, Фрідріх Вільгельм | Фрідріха Бесселя]]. | Функції Бесселя вперше були визначені [[Швейцарія | швейцарським]] математиком [[Бернуллі, Данило | Даніелем Бернуллі]], а названі на честь [[Бесселя, Фрідріх Вільгельм | Фрідріха Бесселя]]. | ||
+ | |||
+ | == Застосування == | ||
+ | Рівняння Бесселя виникає під час знаходження розв'язків [[рівняння Лапласа | рівняння Лапласа]] та [[рівняння Гельмгольца | рівняння Гельмгольца]] в [[циліндричні координати | циліндричних]] та [[сферичні координати | сферичних]] координатах. Тому функції Бесселя застосовуються при розв'язаніі багатьох задач про поширення хвиль, статичних потенціалах і т. п., наприклад: | ||
+ | |||
+ | * [[Закон теплопровідності | теплопровідність]] в циліндричних об'єктах; | ||
+ | * Форми коливання тонкої круглої мембрани | ||
+ | * Швидкість частинок в циліндрі, заповненому рідиною і який обертається навколо своєї осі. | ||
+ | Функції Бесселя застосовуються і в рішенні інших задач, наприклад, при обробці сигналів. | ||
+ | |||
+ | == Визначення == | ||
+ | Оскільки наведене рівняння є рівнянням другого порядку, у нього має бути два [[лінійна залежність | лінійно незалежних]] рішення. Проте залежно від обставин вибираються різні визначення цих рішень. Нижче наведені деякі з них. |
Версія за 17:48, 18 травня 2010
Опції Бесселя в математиці - сім'я функцій, які є канонічними розв'язками диференціального рівняння Бесселя:
- Неможливо розібрати вираз (невідома помилка): x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0,
де Неможливо розібрати вираз (невідома помилка): \alpha
— довільне дійсне число, яке називається порядком.
Найбільш часто використовуються функції Бесселя цілих порядків.
Хоча Неможливо розібрати вираз (невідома помилка): \alpha
и Неможливо розібрати вираз (невідома помилка): (-\alpha) породжують однакові рівняння, зазвичай домовляються про те, щоб їм відповідали різні функції (це робиться, наприклад, для того, щоб функція Бесселя була гладкою по Неможливо розібрати вираз (невідома помилка): \alpha ).
Функції Бесселя вперше були визначені швейцарським математиком Даніелем Бернуллі, а названі на честь Фрідріха Бесселя.
Застосування
Рівняння Бесселя виникає під час знаходження розв'язків рівняння Лапласа та рівняння Гельмгольца в циліндричних та сферичних координатах. Тому функції Бесселя застосовуються при розв'язаніі багатьох задач про поширення хвиль, статичних потенціалах і т. п., наприклад:
- теплопровідність в циліндричних об'єктах;
- Форми коливання тонкої круглої мембрани
- Швидкість частинок в циліндрі, заповненому рідиною і який обертається навколо своєї осі.
Функції Бесселя застосовуються і в рішенні інших задач, наприклад, при обробці сигналів.
Визначення
Оскільки наведене рівняння є рівнянням другого порядку, у нього має бути два лінійно незалежних рішення. Проте залежно від обставин вибираються різні визначення цих рішень. Нижче наведені деякі з них.