Відмінності між версіями «Косинус та синус перетворення Фур'є»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 1: Рядок 1:
 
:Розглянемо часткові випадки:
 
:Розглянемо часткові випадки:
:1.Нехай функція <math>f(x)</math>-парна,<math>f(t)cos (\alpha\ t)</math>-парна,тоді:<math>{A(\alpha\)}=</math>'''<font color='blue' size=3>Косинус і синус інтеграли Фур'є</font>''',породжені дійсною функцією f(t),абсолютна величина якої <math>{\shortmid f(t)\shortmid}</math>інтегрує по інтервалу <math>{0<t<+\infty}</math>,визначається відповідно так:
+
:1.Нехай функція <math>f(x)</math>-парна,<math>f(t)cos (\alpha\ t)</math>-парна,тоді:<math>A(\alpha\)=</math>'''<font color='blue' size=3>Косинус і синус інтеграли Фур'є</font>''',породжені дійсною функцією f(t),абсолютна величина якої <math>{\shortmid f(t)\shortmid}</math>інтегрує по інтервалу <math>{0<t<+\infty}</math>,визначається відповідно так:

Версія за 19:24, 17 травня 2010

Розглянемо часткові випадки:
1.Нехай функція Неможливо розібрати вираз (невідома помилка): f(x)

-парна,Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -парна,тоді:Неможливо розібрати вираз (невідома помилка): A(\alpha\)= Косинус і синус інтеграли Фур'є,породжені дійсною функцією f(t),абсолютна величина якої Неможливо розібрати вираз (невідома помилка): {\shortmid f(t)\shortmid} інтегрує по інтервалу Неможливо розібрати вираз (невідома помилка): {0<t<+\infty} ,визначається відповідно так: