Відмінності між версіями «Розв’язок рівняння Лапласа у циліндричних координатах. Рівняння Беселя»
Матеріал з Вікі ЦДУ
Рядок 8: | Рядок 8: | ||
Відповідне неоднорідне рівняння називається [http://uk.wikipedia.org/wiki/Рівняння_Пуассона рівнянням Пуассона]. | Відповідне неоднорідне рівняння називається [http://uk.wikipedia.org/wiki/Рівняння_Пуассона рівнянням Пуассона]. | ||
+ | |||
+ | '''Рівняння [[Лаплас]] а''' - рівняння в частинних похідних. У тривимірному просторі рівняння Лапласа записується так: | ||
+ | : <math>\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0</math> | ||
+ | і є частковим випадком рівняння Гельмгольца. |
Версія за 17:23, 17 травня 2010
Рівняння Лапласа - однорідне лінійне рівняння в часткових похідних другого порядку еліптичного типу.
- Неможливо розібрати вираз (невідома помилка): \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0
.
Рівняння Лапласа описує електростатичне поле в просторі без електричних зарядів. Рівнянням Лапласа описується стаціонарний розподіл температури у просторовому тілі.
Функції, які задовільняють рівнянню Лапласа, називаються гармонічними.
Відповідне неоднорідне рівняння називається рівнянням Пуассона.
Рівняння Лаплас а - рівняння в частинних похідних. У тривимірному просторі рівняння Лапласа записується так:
- Неможливо розібрати вираз (невідома помилка): \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0
і є частковим випадком рівняння Гельмгольца.