Відмінності між версіями «Стаття учня до проекту "Таємниці руху"»
Рядок 10: | Рядок 10: | ||
==Тема дослідження: Поворот== | ==Тема дослідження: Поворот== | ||
− | ==Проблема дослідження: | + | ==Проблема дослідження:== |
− | проектувальникам лінії зв'язку потрібно з'єднати пункти А, В і С. Як побудувати цю лінію, щоб витратити найменшу кількість кабелю? | + | проектувальникам лінії зв'язку потрібно з'єднати пункти А, В і С. Як побудувати цю лінію, щоб витратити найменшу кількість кабелю? |
==Гіпотеза дослідження== | ==Гіпотеза дослідження== |
Версія за 11:32, 29 січня 2015
Зміст
Тема проекту: Таємниці руху
Наша команда
"Математики": Софія Іванова, Микола Петренко, Ліля Синиця
Тема дослідження: Поворот
Проблема дослідження:
проектувальникам лінії зв'язку потрібно з'єднати пункти А, В і С. Як побудувати цю лінію, щоб витратити найменшу кількість кабелю?
Гіпотеза дослідження
Ми перефразували задачу наступним чином: потрібно всі три точки з'єднати відрізками так, щоб сума довжин всіх відрізків лінії зв’язку була найменшою.
Випадок 1. Якщо точки А, В і С лежать на одній прямій, то, зрозуміло, мінімальною лінією зв’язку буде відрізок, який з’єднує крайні точки.
Випадок 2. Точки А, В і С не лежать на одній прямій. Софія припустила, що мінімальною лінією зв’язку буде АВ+ВС+АС. У Миколи та Лілі виникли сумніви.
Ми розглянули найкоротшу відстань від точки С до АВ, тобто точку М, яка лежить на прямій АВ, причому СМ перпендикулярне АВ (рис.1). Тоді можна помітити, що АМ+ВМ+СМ<АВ+ВС+АС. Отже потрібно знайти таку точку М, щоб АМ+ВМ+СМ=min.
Мета дослідження
Результати дослідження
Висновки
Корисні ресурси
Сторінка проекту Назва проекту
Кіровоградський державний педагогічний університет імені Володимира Винниченка