Відмінності між версіями «Мікропроцесор. СПК»
(Створена сторінка: {{Меню для довідника користувача НОП}}) |
|||
Рядок 1: | Рядок 1: | ||
{{Меню для довідника користувача НОП}} | {{Меню для довідника користувача НОП}} | ||
+ | |||
+ | == Мікропроцесор == | ||
+ | |||
+ | Мікропроце́сор — інтегральна схема, яка виконує функції центрального процесора (ЦП) або спеціалізованого процесора. Сьогодні слово мікропроцесор є практично повним синонімом слова процесор, оскільки функціональний блок, що на ранніх стадіях розвитку обчислювальної техніки займали цілу плату чи навіть шафу, тепер вміщається в одну невеличку інтегральну схему із сотнями мільйонів транзисторів всередині. З середини 1980-х мікропроцесори витіснили інші види ЦП. Проте загалом це не так: центральні процесорні пристрої деяких суперкомп'ютерів навіть сьогодні є складними комплексами великих (ВІС) і надвеликих (НВІС) інтегральних схем. | ||
+ | |||
+ | == Етимологія == | ||
+ | |||
+ | В англійській мові слово процесор (англ. processor) загалом означає функціональний блок пристрою або системи (не обов'язково в електроніці), який виконує певний процес. В українській мові слова процесор, мікропроцесор закріпилися виключно для позначення електронної мікросхеми, що обробляє дані методом виконання команд із певного набору команд процесора. | ||
+ | |||
+ | Першим хто подав ідею універсального обчислювального процесора був Гофф Тед, який розробив архітектуру першого мікропроцесора. Практичну реалізацію здійснив Фредеріко Фаґґін | ||
+ | |||
+ | == Технологічний процес виготовлення == | ||
+ | |||
+ | Є два основні напрями розвитку індустрії виробництва мікросхем. | ||
+ | |||
+ | Перше — розробка архітектури, що включає вибір тих або інших функцій і особливостей майбутніх схем, мікросхемотехніку і компоновку на кристалі функціональних блоків і їхніх елементів, що втілюють вибрані функції. А також — оптимізація готових блоків для усунення вузьких місць, підвищення продуктивності і надійності роботи майбутніх схем, спрощення і здешевлення їхнього масового виробництва. Ці роботи можна умовно назвати «паперовими» — вони виконуються «на кінчику пера» і існують лише у вигляді комп'ютерних файлів і креслень проектів майбутніх мікросхем, що зовсім не виключає багатократного комп'ютерного моделювання фізичної роботи як окремих блоків, так і мікросхеми в цілому. Для цього використовуються спеціальні, ретельно узгоджені з реальними приладами фізичні моделі транзисторів і інших функціональних елементів. І чим ретельніше змодельована робота проекту, тим швидше і з меншими помилками буде виготовлена сама мікросхема (мається на увазі її фінальний, масовий варіант). Адже відладка, пошук і виправлення помилок проектування у вже готовому кристалі, як правило, значно складніше і дорожче, ніж моделювання на комп'ютері. | ||
+ | |||
+ | Другий основоположний напрям — це власне напівпровідникові технології виробництва мікросхем. Сюди входять наукова розробка і втілення в «кремній» все швидших і менших транзисторів, ланцюгів зв'язку між ними і іншим «обрамленням» мікроструктур на кристалі, створення технологій виготовлення малюнка ліній і транзисторів на поверхні кремнію, нових матеріалів і устаткування для цього, а також «manufacturability» — область знань про те, як проводити мікросхеми вищої якості, швидші, з великою кількістю придатних кристалів на пластині, меншим числом дефектів і розкидом робочих параметрів. | ||
+ | |||
+ | Літографія дозволяє переносити на низку шарів кремнієвої підкладки високоскладні мікросхеми з мільйонами транзисторів. Тоді як проектувальники мікросхем продовжують додавати нові функції і підвищувати продуктивність своєї продукції, скорочення розмірів транзисторів дозволяє уміщати всю більшу їх кількість в межах заданої області. Те, наскільки мініатюрними можуть бути транзистори і їхні з'єднання, безпосередньо залежить від довжини хвилі світла, що використовується для перенесення схеми на підкладку. | ||
+ | |||
+ | == Мікропроцесорна система == | ||
+ | |||
+ | Виконання того чи іншого алгоритма можливо при наявності мікропроцесора та пристроїв, в яких зберігається програма. Відомо, що програма — це сукупність команд (правил), що виконуються в послідовності, заданій алгоритмом. Команди вибираються з пам'яті в послідовності, що задається процесором. Процесор визначає адреси елементів пам'яті, в яких зберігаються необхідні данні. Дані передаються в процесор, де перетворюються згідно з командами, і результати операції передаються знову в пам'ять. | ||
+ | |||
+ | Будь-яка мікропроцесорна система працює разом з рядом зовнішних пристроїв, одержуючи від них необхідну інформацію та передаючи іншу. Для зв'язку з зовнішними пристроями існує інтерфейс (англ. interface). Цим терміном позначається весь комплекс пристроїв, правил та технічних засобів, що регламентують та забезпечують обмін інформацією між мікропроцесором (включаючи пам'ять) та зовнішними пристроями. Головними в інтерфейсі є шини, або, як їх ще часто називають, магістралі. Магістраль — це сукупність провідників, для яких строго нормовані логічні рівні «0» та «1». Потужність сигналів на шинах має бути достатньою для живлення необхідної кількості приєднаних до них пристроїв. Для забезпечення цієї потужності використовуються спеціальні мікросхеми — шинні підсилювачі (ШП). | ||
+ | |||
+ | За призначенням, шини поділяються на три типи: | ||
+ | |||
+ | * адресні; | ||
+ | * даних; | ||
+ | * керування. | ||
+ | |||
+ | Але реально як в мікропроцесорній техниці, так і в комп'ютерній часто дві шини суміщують шляхом мультіплексування, що дещо знижує їх швидкодію, але набагато зменшує кількість виводів мікросхем. |
Поточна версія на 13:25, 10 листопада 2014
|
Мікропроцесор
Мікропроце́сор — інтегральна схема, яка виконує функції центрального процесора (ЦП) або спеціалізованого процесора. Сьогодні слово мікропроцесор є практично повним синонімом слова процесор, оскільки функціональний блок, що на ранніх стадіях розвитку обчислювальної техніки займали цілу плату чи навіть шафу, тепер вміщається в одну невеличку інтегральну схему із сотнями мільйонів транзисторів всередині. З середини 1980-х мікропроцесори витіснили інші види ЦП. Проте загалом це не так: центральні процесорні пристрої деяких суперкомп'ютерів навіть сьогодні є складними комплексами великих (ВІС) і надвеликих (НВІС) інтегральних схем.
Етимологія
В англійській мові слово процесор (англ. processor) загалом означає функціональний блок пристрою або системи (не обов'язково в електроніці), який виконує певний процес. В українській мові слова процесор, мікропроцесор закріпилися виключно для позначення електронної мікросхеми, що обробляє дані методом виконання команд із певного набору команд процесора.
Першим хто подав ідею універсального обчислювального процесора був Гофф Тед, який розробив архітектуру першого мікропроцесора. Практичну реалізацію здійснив Фредеріко Фаґґін
Технологічний процес виготовлення
Є два основні напрями розвитку індустрії виробництва мікросхем.
Перше — розробка архітектури, що включає вибір тих або інших функцій і особливостей майбутніх схем, мікросхемотехніку і компоновку на кристалі функціональних блоків і їхніх елементів, що втілюють вибрані функції. А також — оптимізація готових блоків для усунення вузьких місць, підвищення продуктивності і надійності роботи майбутніх схем, спрощення і здешевлення їхнього масового виробництва. Ці роботи можна умовно назвати «паперовими» — вони виконуються «на кінчику пера» і існують лише у вигляді комп'ютерних файлів і креслень проектів майбутніх мікросхем, що зовсім не виключає багатократного комп'ютерного моделювання фізичної роботи як окремих блоків, так і мікросхеми в цілому. Для цього використовуються спеціальні, ретельно узгоджені з реальними приладами фізичні моделі транзисторів і інших функціональних елементів. І чим ретельніше змодельована робота проекту, тим швидше і з меншими помилками буде виготовлена сама мікросхема (мається на увазі її фінальний, масовий варіант). Адже відладка, пошук і виправлення помилок проектування у вже готовому кристалі, як правило, значно складніше і дорожче, ніж моделювання на комп'ютері.
Другий основоположний напрям — це власне напівпровідникові технології виробництва мікросхем. Сюди входять наукова розробка і втілення в «кремній» все швидших і менших транзисторів, ланцюгів зв'язку між ними і іншим «обрамленням» мікроструктур на кристалі, створення технологій виготовлення малюнка ліній і транзисторів на поверхні кремнію, нових матеріалів і устаткування для цього, а також «manufacturability» — область знань про те, як проводити мікросхеми вищої якості, швидші, з великою кількістю придатних кристалів на пластині, меншим числом дефектів і розкидом робочих параметрів.
Літографія дозволяє переносити на низку шарів кремнієвої підкладки високоскладні мікросхеми з мільйонами транзисторів. Тоді як проектувальники мікросхем продовжують додавати нові функції і підвищувати продуктивність своєї продукції, скорочення розмірів транзисторів дозволяє уміщати всю більшу їх кількість в межах заданої області. Те, наскільки мініатюрними можуть бути транзистори і їхні з'єднання, безпосередньо залежить від довжини хвилі світла, що використовується для перенесення схеми на підкладку.
Мікропроцесорна система
Виконання того чи іншого алгоритма можливо при наявності мікропроцесора та пристроїв, в яких зберігається програма. Відомо, що програма — це сукупність команд (правил), що виконуються в послідовності, заданій алгоритмом. Команди вибираються з пам'яті в послідовності, що задається процесором. Процесор визначає адреси елементів пам'яті, в яких зберігаються необхідні данні. Дані передаються в процесор, де перетворюються згідно з командами, і результати операції передаються знову в пам'ять.
Будь-яка мікропроцесорна система працює разом з рядом зовнішних пристроїв, одержуючи від них необхідну інформацію та передаючи іншу. Для зв'язку з зовнішними пристроями існує інтерфейс (англ. interface). Цим терміном позначається весь комплекс пристроїв, правил та технічних засобів, що регламентують та забезпечують обмін інформацією між мікропроцесором (включаючи пам'ять) та зовнішними пристроями. Головними в інтерфейсі є шини, або, як їх ще часто називають, магістралі. Магістраль — це сукупність провідників, для яких строго нормовані логічні рівні «0» та «1». Потужність сигналів на шинах має бути достатньою для живлення необхідної кількості приєднаних до них пристроїв. Для забезпечення цієї потужності використовуються спеціальні мікросхеми — шинні підсилювачі (ШП).
За призначенням, шини поділяються на три типи:
- адресні;
- даних;
- керування.
Але реально як в мікропроцесорній техниці, так і в комп'ютерній часто дві шини суміщують шляхом мультіплексування, що дещо знижує їх швидкодію, але набагато зменшує кількість виводів мікросхем.