Відмінності між версіями «Класифікація задач стохастичного програмування: за виглядом цільової функції та за умовами обмеження.»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 10: Рядок 10:
 
У цю ж групу моделей включають задачі, де потрібно мінімізувати поріг <math>\ {k} </math>, який не повинен бути перевищений лінійною формою <math>\ {cx} </math> із заданою ймовірністю <math>\ {\alpha} </math>:
 
У цю ж групу моделей включають задачі, де потрібно мінімізувати поріг <math>\ {k} </math>, який не повинен бути перевищений лінійною формою <math>\ {cx} </math> із заданою ймовірністю <math>\ {\alpha} </math>:
 
<math>\ {k} \rightarrow min,P({cx} \le {k})={\alpha} </math>.
 
<math>\ {k} \rightarrow min,P({cx} \le {k})={\alpha} </math>.
 +
 +
При формалізації стохастичної задачі можна привести у відповідність всій області визначення цільової функції одне або декілька імовірнісних обмежень. Умови задачі (в лінійному випадку) можуть бути представлені у вигляді одного з наступних записів:
 +
 +
*за умовами обмеження
 +
1.
 +
P{∑_(j=1)^n▒〖a_ij x_j≥b_i 〗}≥α_i, 0≤α_i≤1, i=(1,m) ̅

Версія за 15:42, 8 січня 2014

В якості цільової функції задачі стохастичного лінійного програмування з імовірнісними обмеженнями зазвичай приниймають такі функціонали, як математичне сподівання або дисперсію лінійної форми або ймовірність перевищення лінійною формою деякого фіксованого порога.

  • за виглядом цільової функції

1.Задачі з цільовою функцією Неможливо розібрати вираз (невідома помилка): \overline{cx}=M(cx)

називають М- моделями

2.Задачі, в яких потрібно мінімізувати дисперсію лінійної форми Неможливо розібрати вираз (невідома помилка): \ M({cx-\overline{cx}})^2 , називають V-моделями

3.Стохастичні задачі, в яких оптимізується ймовірність перевищення лінійної формою деякого порога Неможливо розібрати вираз (невідома помилка): \ P({cx \geq c^0 x^0}) , називають Р-моделями

У цю ж групу моделей включають задачі, де потрібно мінімізувати поріг Неможливо розібрати вираз (невідома помилка): \ {k} , який не повинен бути перевищений лінійною формою Неможливо розібрати вираз (невідома помилка): \ {cx}

із заданою ймовірністю Неможливо розібрати вираз (невідома помилка): \ {\alpha} 

Неможливо розібрати вираз (невідома помилка): \ {k} \rightarrow min,P({cx} \le {k})={\alpha} .

При формалізації стохастичної задачі можна привести у відповідність всій області визначення цільової функції одне або декілька імовірнісних обмежень. Умови задачі (в лінійному випадку) можуть бути представлені у вигляді одного з наступних записів:

  • за умовами обмеження

1. P{∑_(j=1)^n▒〖a_ij x_j≥b_i 〗}≥α_i, 0≤α_i≤1, i=(1,m) ̅