Відмінності між версіями «Третя теорема двоїстості. Економічне тлумачення.»
Sergkyl (обговорення • внесок) |
Sergkyl (обговорення • внесок) |
||
Рядок 9: | Рядок 9: | ||
=== '''Доведення.''' === | === '''Доведення.''' === | ||
− | + | Розглянемо задачу лінійного програмування, подану в канонічній формі: | |
<math>max F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}~~~~~~~~(2)</math> <br> | <math>max F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}~~~~~~~~(2)</math> <br> | ||
<center><math>\left\{ {\begin{array}{l} | <center><math>\left\{ {\begin{array}{l} | ||
Рядок 17: | Рядок 17: | ||
a_{m1}x_{1}+a_{m2}x_{2}+a_{mn}x_{n}=b_{m} \\ | a_{m1}x_{1}+a_{m2}x_{2}+a_{mn}x_{n}=b_{m} \\ | ||
\end{array}} \right.~~~~~~~~(3)</math></center> | \end{array}} \right.~~~~~~~~(3)</math></center> | ||
− | <math>x_j\ge 0~</math> ,<math>j=\overline{1,n}~</math> | + | <math>x_j\ge 0~</math> ,<math>j=\overline{1,n}~~~~~~~~(4)</math> <br> |
− | Двоїсту задачу до задачі ( | + | Двоїсту задачу до задачі (2)-(4) сформулюємо так: знайти оптимальний план <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})~</math> ,за якого мінімізується значення <math> Z=b_{1}y_{1}+b_{2}y_2{}+...+b_{m}y_{m}~~~~~~~~~~~(5)</math> |
за умов: | за умов: | ||
<center><math>\left\{ {\begin{array}{l} | <center><math>\left\{ {\begin{array}{l} | ||
Рядок 26: | Рядок 26: | ||
................................ \\ | ................................ \\ | ||
a_{m1}y_{1}+a_{m2}y_{2}+a_{mn}y_{n} \ge c_{m} \\ | a_{m1}y_{1}+a_{m2}y_{2}+a_{mn}y_{n} \ge c_{m} \\ | ||
− | \end{array}} \right.</math></center> | + | \end{array}} \right.~~~~~~~~~~(6)</math></center> |
причому умова невід’ємності змінних <math>y_i^*</math> <math>(i=\overline{1,n})~</math> відсутня. <br> | причому умова невід’ємності змінних <math>y_i^*</math> <math>(i=\overline{1,n})~</math> відсутня. <br> | ||
− | Позначимо <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})~</math> — оптимальний план двоїстої задачі,<math>X^*=(x_{1}^{*},x_{2}^{*},...,x_{m}^{*})~</math> — оптимальний план задачі ( | + | Позначимо <math>Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})~</math> — оптимальний план двоїстої задачі,<math>X^*=(x_{1}^{*},x_{2}^{*},...,x_{m}^{*})~</math> — оптимальний план задачі (2)-(4). За першою теоремою двоїстості відомо, що:<math>max\ F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}=min\ Z=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}~</math> <br> |
− | або <math>F=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}~</math> | + | або <math>F=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}~~~~~~~~(7)</math> <br> |
− | Оскільки досліджується питання впливу зміни значень <math>b_{i}~</math>,<math>(i=\overline{1,n})~</math> на <math>F~</math> , то лінійну функцію ( | + | Оскільки досліджується питання впливу зміни значень <math>b_{i}~</math>,<math>(i=\overline{1,n})~</math> на <math>F~</math> , то лінійну функцію (7) можна розглядати як функцію від аргументів <math>b_{i}~</math>,<math>(i=\overline{1,n})~</math>.Тоді частинні похідні за змінними <math>b_{i}~</math>,<math>(i=\overline{1,n})~</math> будуть дорівнювати компонентам оптимального плану двоїстої задачі <math>y_{i}^{*}~</math> :<math>dF/db_{i}=y_{i}^{*}~</math> ,<math>i=1,2,...,m~~~~~~~~~(8)</math> <br> |
Однак дане твердження справедливе лише у тому разі, коли компоненти оптимального плану <math>Y^*=(y_1^*,y_2^*,...,y_m^*)~</math> залишаються постійними, а оскільки за першою теоремою двоїстості <math>Y^*=C^*D^{-1}~</math>, то значення двоїстих оцінок будуть незмінними лише за умови постійної структури оптимального плану початкової задачі. | Однак дане твердження справедливе лише у тому разі, коли компоненти оптимального плану <math>Y^*=(y_1^*,y_2^*,...,y_m^*)~</math> залишаються постійними, а оскільки за першою теоремою двоїстості <math>Y^*=C^*D^{-1}~</math>, то значення двоїстих оцінок будуть незмінними лише за умови постійної структури оптимального плану початкової задачі. | ||
− | Отже, рівності ( | + | Отже, рівності (8) справджуються лише за незначних змін <math>b_i~</math>,інакше суттєва зміна умов початкової задачі (правих частин системи обмежень (3) та цільової функції (5) приведе до зміни базису в оптимальному плані прямої задачі, а значить, і до іншого розв’язку двоїстої <math>Y^{~}\ne Y^*~</math>. |
Версія за 11:25, 4 травня 2012
Зміст
Третя теорема двоїстості
Теорема (третя теорема двоїстості).
Компоненти оптимального плану двоїстої задачі Неможливо розібрати вираз (невідома помилка): y_{i}^{*}
Неможливо розібрати вираз (невідома помилка): i=\overline{1,n} дорівнюють значенням частинних похідних від цільової функції Неможливо розібрати вираз (невідома помилка): F(b_{1},b_{2}...,b_{m}~) за відповідними аргументами Неможливо розібрати вираз (невідома помилка): b_{i}~ ,Неможливо розібрати вираз (невідома помилка): i=\overline{1,n}~
або
Неможливо розібрати вираз (невідома помилка): dF/db_i=y_{i}^{*}~
, Неможливо розібрати вираз (невідома помилка): (i=1,2,...,m)~~~~~~~~(1)
Доведення.
Розглянемо задачу лінійного програмування, подану в канонічній формі: Неможливо розібрати вираз (невідома помилка): max F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}~~~~~~~~(2)
Неможливо розібрати вираз (невідома помилка): x_j\ge 0~
,Неможливо розібрати вираз (невідома помилка): j=\overline{1,n}~~~~~~~~(4)
Двоїсту задачу до задачі (2)-(4) сформулюємо так: знайти оптимальний план Неможливо розібрати вираз (невідома помилка): Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})~
,за якого мінімізується значення Неможливо розібрати вираз (невідома помилка): Z=b_{1}y_{1}+b_{2}y_2{}+...+b_{m}y_{m}~~~~~~~~~~~(5)
за умов:
причому умова невід’ємності змінних Неможливо розібрати вираз (невідома помилка): y_i^*
Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})~ відсутня.
Позначимо Неможливо розібрати вираз (невідома помилка): Y^*=(y_{1}^{*},y_{2}^{*},...,y_{m}^{*})~
— оптимальний план двоїстої задачі,Неможливо розібрати вираз (невідома помилка): X^*=(x_{1}^{*},x_{2}^{*},...,x_{m}^{*})~ — оптимальний план задачі (2)-(4). За першою теоремою двоїстості відомо, що:Неможливо розібрати вираз (невідома помилка): max\ F=c_{1}x_{1}+c_{2}x_{2}+...+c_{n}x_{n}=min\ Z=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}~
або Неможливо розібрати вираз (невідома помилка): F=b_{1}y_{1}^{*}+b_{2}y_{2}^{*}+...+b_{m}y_{m}^{*}~~~~~~~~(7)
Оскільки досліджується питання впливу зміни значень Неможливо розібрати вираз (невідома помилка): b_{i}~ ,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})~
на Неможливо розібрати вираз (невідома помилка): F~ , то лінійну функцію (7) можна розглядати як функцію від аргументів Неможливо розібрати вираз (невідома помилка): b_{i}~
,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})~ .Тоді частинні похідні за змінними Неможливо розібрати вираз (невідома помилка): b_{i}~ ,Неможливо розібрати вираз (невідома помилка): (i=\overline{1,n})~
будуть дорівнювати компонентам оптимального плану двоїстої задачі Неможливо розібрати вираз (невідома помилка): y_{i}^{*}~ :Неможливо розібрати вираз (невідома помилка): dF/db_{i}=y_{i}^{*}~ ,Неможливо розібрати вираз (невідома помилка): i=1,2,...,m~~~~~~~~~(8)
Однак дане твердження справедливе лише у тому разі, коли компоненти оптимального плану Неможливо розібрати вираз (невідома помилка): Y^*=(y_1^*,y_2^*,...,y_m^*)~
залишаються постійними, а оскільки за першою теоремою двоїстості Неможливо розібрати вираз (невідома помилка): Y^*=C^*D^{-1}~
, то значення двоїстих оцінок будуть незмінними лише за умови постійної структури оптимального плану початкової задачі.
Отже, рівності (8) справджуються лише за незначних змін Неможливо розібрати вираз (невідома помилка): b_i~ ,інакше суттєва зміна умов початкової задачі (правих частин системи обмежень (3) та цільової функції (5) приведе до зміни базису в оптимальному плані прямої задачі, а значить, і до іншого розв’язку двоїстої Неможливо розібрати вираз (невідома помилка): Y^{~}\ne Y^*~ .
Економічний зміст третьої теореми двоїстості.
Двоїсті оцінки є унікальним інструментом, який дає змогу зіставляти непорівнянні речі. Очевидно, що неможливим є просте зіставлення величин, які мають різні одиниці вимірювання. Якщо взяти як приклад виробничу задачу, то цікавим є питання: як змінюватиметься значення цільової функції (може вимірюватися в грошових одиницях) за зміни обсягів різних ресурсів (можуть вимірюватися в тоннах, Неможливо розібрати вираз (невідома помилка): M^2
, люд./год, га тощо).Використовуючи третю теорему двоїстості, можна легко визначити вплив на зміну значення цільової функції збільшення чи зменшення обсягів окремих ресурсів: числові значення двоїстих оцінок показують, на яку величину змінюється цільова функція за зміни обсягу відповідного даній оцінці ресурсу Неможливо розібрати вираз (невідома помилка): y_{i}^{*}=F /\bigtriangleup{b_{i}}~
.Отже, за умови незначних змін Неможливо розібрати вираз (невідома помилка): b_{i}~
замість задачі (3.29)—(3.31) маємо нову задачу, де Неможливо розібрати вираз (невідома помилка): b_{i}~ замінено на Неможливо розібрати вираз (невідома помилка): b_{i}^{'}=b_{i}+\bigtriangleup{b_{i}}~
.Позначимо через Неможливо розібрати вираз (невідома помилка): X^{'}~
оптимальний план нової задачі.Для визначення Неможливо розібрати вираз (невідома помилка): F(X^{'})~ не потрібно розв’язувати нову задачу лінійного програмування, а достатньо скористатися формулою Неможливо розібрати вираз (невідома помилка): F(X^{'})-F(X^{*})=y_{i}^{*}b_{i}~
, де Неможливо розібрати вираз (невідома помилка): X^*~
— оптимальний план задачі (3.29)—(3.31).