Відмінності між версіями «Задача СП з апріорними розв’язувальними розподілами. Зведення до розв’язку задачі скінченно-вимірного нелінійного програмування.»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 1: Рядок 1:
Визначення апріорних розв'язувальних розподілів задач другого класу - стохастичних задач виду (3.4) - (3.6) може бути аналогічним чином зведено до розв'язку задач скінчено-вимірного нелінійного програмування.
+
<math>M\psi_{0}(x)=\int\psi_{0}(x)dF_{x}\rightarrow inf,\;(3.1)</math>
 +
 
 +
<math>M\psi_{i}(x)=\int\psi_{i}(x)dF_{x}\leq 0,\;i=1,2,..,m,\;(3.2)</math>
 +
 
 +
<math>x\in X,\;(3.3)</math>
  
 
<math>M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_xdF_{\omega}\rightarrow inf,\;(3.4)</math>
 
<math>M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_xdF_{\omega}\rightarrow inf,\;(3.4)</math>
Рядок 5: Рядок 9:
 
<math>M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_xdF_{\omega}\leq 0,\;i=1,..,m,\;(3.5)</math>
 
<math>M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_xdF_{\omega}\leq 0,\;i=1,..,m,\;(3.5)</math>
  
<math>x\in X.\;(3.6)</math>
+
<math>x\in X,\;(3.6)</math>
  
Позначимо
+
<math>M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_{x|\omega}dF_{\omega}\rightarrow inf,\;(3.7)</math>
  
<math>\int\limits_{\Omega}\overline{\psi_i}(\omega,x)dF_{\omega}=\overline{\psi_i}(x),\;i=0,1,...,m.\;(3.17)</math>
+
<math>M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_{x|\omega}dF_{\omega}\leq 0,\;i=1,..,m,\;(3.8)</math>
  
В цих позначеннях задача (3.4) - (3.6) зводиться до задачі виду (3.1) - (3.3):
+
<math>x\in X.\;(3.9)</math>
  
<math>M\psi_{0}(x)=\int\psi_{0}(x)dF_{x}\rightarrow inf,\;(3.1)</math>
+
Визначення апріорних розв'язувальних розподілів задач другого класу - стохастичних задач виду (3.4) - (3.6) може бути аналогічним чином зведено до розв'язку задач скінчено-вимірного нелінійного програмування.
  
<math>M\psi_{i}(x)=\int\psi_{i}(x)dF_{x}\leq 0,i=1,2,..,m,\;(3.2)</math>
+
Введемо наступне позначення:
  
<math>x\in X.\;(3.3)</math>
+
<math>\int\limits_{\Omega}\overline{\psi_i}(\omega,x)dF_{\omega}=\overline{\psi_i}(x),\;i=0,1,...,m.\;(3.17)</math>
 +
 
 +
В цих позначеннях задача (3.4) - (3.6) зводиться до задачі виду (3.1) - (3.3).
  
 
Повторюючи міркування попереднього пункту, прийдемо до висновку, що обчислення апріорних розв'язувальних розподілів задачі (3.4) - (3.6) еквівалентно розв'язку наступної скінчено-вимірної задачі математичного програмування.
 
Повторюючи міркування попереднього пункту, прийдемо до висновку, що обчислення апріорних розв'язувальних розподілів задачі (3.4) - (3.6) еквівалентно розв'язку наступної скінчено-вимірної задачі математичного програмування.
Рядок 44: Рядок 50:
 
   
 
   
 
Крім умов невід'ємності змінних задача має <math>m+1</math> обмеження. Тому оптимальний план задачі (3.21) - (3.24) містить не більше  <math>m+1</math> додатних значень <math>p_{k}</math>. Величини <math>p^\ast_{k}>0</math> і відповідні їм вектори <math>x^\ast_{k}</math> визначають апріорний дискретний розв'язувальний розподіл розглянутої задачі. Приведені нижче міркування справедливі і для множини <math>X</math>, що складається зі зліченого числа точок. Цей же принцип може бути використаний для наближення апріорного розвязувального розподілу у випадку, коли множина <math>X</math> являє собою компакт. Дискретне значення <math>x_k</math> відповідає вузлам <math>\varepsilon</math>-мережі множини <math>X</math>.
 
Крім умов невід'ємності змінних задача має <math>m+1</math> обмеження. Тому оптимальний план задачі (3.21) - (3.24) містить не більше  <math>m+1</math> додатних значень <math>p_{k}</math>. Величини <math>p^\ast_{k}>0</math> і відповідні їм вектори <math>x^\ast_{k}</math> визначають апріорний дискретний розв'язувальний розподіл розглянутої задачі. Приведені нижче міркування справедливі і для множини <math>X</math>, що складається зі зліченого числа точок. Цей же принцип може бути використаний для наближення апріорного розвязувального розподілу у випадку, коли множина <math>X</math> являє собою компакт. Дискретне значення <math>x_k</math> відповідає вузлам <math>\varepsilon</math>-мережі множини <math>X</math>.
 +
 +
3.4. Обчислення апостеріорних розв'язувальних правил стохастичної задачі (3.7) - (3.9) в загальному випадку пов'язано зі значними труднощами. Однак у випадку, коли простір <math>\Omega</math> елементарних подій складається зі скінченого числа <math>(r)</math> елементів, ймовірність яких задана, розв'язок спрощується. Побудова опуклої оболонки множини
 +
 +
<math>Y={{y_i=\psi_i(\omega,x),\;i=0,1,...,m,\;x\in X}},</math>
 +
 +
можна уявити у вигляді двохетапної операції. На початку будуються опуклі оболонки множини <math>Y</math> при фіксованих значеннях <math>\omega</math>, а потім у відповідності з дискретною ймовірнісною мірою на <math>\Omega</math>
 +
визначається опукла комбінація множин, побудованих на першому етапі.
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
  
 
Виконала: [[Користувач:Юрченко Тетяна Сергіївна|Юрченко Тетяна Сергіївна ]]
 
Виконала: [[Користувач:Юрченко Тетяна Сергіївна|Юрченко Тетяна Сергіївна ]]
  
 
Доповнювала: [[Користувач:65890|Татьяненко Марина Олександрівна]]
 
Доповнювала: [[Користувач:65890|Татьяненко Марина Олександрівна]]

Версія за 17:26, 26 березня 2019

Неможливо розібрати вираз (невідома помилка): M\psi_{0}(x)=\int\psi_{0}(x)dF_{x}\rightarrow inf,\;(3.1)


Неможливо розібрати вираз (невідома помилка): M\psi_{i}(x)=\int\psi_{i}(x)dF_{x}\leq 0,\;i=1,2,..,m,\;(3.2)


Неможливо розібрати вираз (невідома помилка): x\in X,\;(3.3)


Неможливо розібрати вираз (невідома помилка): M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_xdF_{\omega}\rightarrow inf,\;(3.4)


Неможливо розібрати вираз (невідома помилка): M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_xdF_{\omega}\leq 0,\;i=1,..,m,\;(3.5)


Неможливо розібрати вираз (невідома помилка): x\in X,\;(3.6)


Неможливо розібрати вираз (невідома помилка): M\psi_0(\omega,x)=\int\limits_{X\times\Omega}\psi_0(\omega,x)dF_{x|\omega}dF_{\omega}\rightarrow inf,\;(3.7)


Неможливо розібрати вираз (невідома помилка): M\psi_i(\omega,x)=\int\limits_{X\times\Omega}\psi_i(\omega,x)dF_{x|\omega}dF_{\omega}\leq 0,\;i=1,..,m,\;(3.8)


Неможливо розібрати вираз (невідома помилка): x\in X.\;(3.9)


Визначення апріорних розв'язувальних розподілів задач другого класу - стохастичних задач виду (3.4) - (3.6) може бути аналогічним чином зведено до розв'язку задач скінчено-вимірного нелінійного програмування.

Введемо наступне позначення:

Неможливо розібрати вираз (невідома помилка): \int\limits_{\Omega}\overline{\psi_i}(\omega,x)dF_{\omega}=\overline{\psi_i}(x),\;i=0,1,...,m.\;(3.17)


В цих позначеннях задача (3.4) - (3.6) зводиться до задачі виду (3.1) - (3.3).

Повторюючи міркування попереднього пункту, прийдемо до висновку, що обчислення апріорних розв'язувальних розподілів задачі (3.4) - (3.6) еквівалентно розв'язку наступної скінчено-вимірної задачі математичного програмування.

Вимагається обчислити вектори Неможливо розібрати вираз (невідома помилка): x_k

і числа Неможливо розібрати вираз (невідома помилка): p_k

, які визначають нижню грань функціонала:

Неможливо розібрати вираз (невідома помилка): {\sum^{m}_{k=0}\overline{\psi_{0}}(x_k)p_{k}},\;(3.18)


за умови

Неможливо розібрати вираз (невідома помилка): {\sum^{m}_{k=0}\overline{\psi_{i}}(x_{k})p_{k}}\le 0,(3.19)


Неможливо розібрати вираз (невідома помилка): x_{k}\in X,p_{k}\ge 0,k = 0,1,...m,\sum^{m}_{k=0} p_{k}=1.\;(3.20)


Оптимальний план Неможливо розібрати вираз (невідома помилка): x^\ast_{k} , Неможливо розібрати вираз (невідома помилка): p^\ast_{k} , Неможливо розібрати вираз (невідома помилка): k=0,1,...,m,

задачі (3.18) - (3.20) визначає дискретний розв'язувальний розподіл задачі (3.4) - (3.6).

У випадку, коли множина Неможливо розібрати вираз (невідома помилка): X

складається із скінченного числа Неможливо розібрати вираз (невідома помилка): s
точок Неможливо розібрати вираз (невідома помилка): x_1,...,x_s

, обчислення розв'язувального розподілу зводиться до розв'язку задачі лінійного програмування:

Неможливо розібрати вираз (невідома помилка): {\sum^{s}_{k=1}\overline\psi_{0}(x_{k})p_{k}}\rightarrow min,\;(3.21)


Неможливо розібрати вираз (невідома помилка): {\sum^{s}_{k=1}\overline\psi_{i}x_{k}p_{k}\le 0,\;i = 1,...m},\;(3.22)


Неможливо розібрати вираз (невідома помилка): \sum^{s}_{k=1}p_{k}=1,\;(3.23)


Неможливо розібрати вираз (невідома помилка): p_{k}\ge 0,k = 1,...s.\;(3.24)


Крім умов невід'ємності змінних задача має Неможливо розібрати вираз (невідома помилка): m+1

обмеження. Тому оптимальний план задачі (3.21) - (3.24) містить не більше  Неможливо розібрати вираз (невідома помилка): m+1
додатних значень Неможливо розібрати вираз (невідома помилка): p_{k}

. Величини Неможливо розібрати вираз (невідома помилка): p^\ast_{k}>0

і відповідні їм вектори Неможливо розібрати вираз (невідома помилка): x^\ast_{k}
визначають апріорний дискретний розв'язувальний розподіл розглянутої задачі. Приведені нижче міркування справедливі і для множини Неможливо розібрати вираз (невідома помилка): X

, що складається зі зліченого числа точок. Цей же принцип може бути використаний для наближення апріорного розвязувального розподілу у випадку, коли множина Неможливо розібрати вираз (невідома помилка): X

являє собою компакт. Дискретне значення Неможливо розібрати вираз (невідома помилка): x_k
відповідає вузлам Неможливо розібрати вираз (невідома помилка): \varepsilon

-мережі множини Неможливо розібрати вираз (невідома помилка): X .

3.4. Обчислення апостеріорних розв'язувальних правил стохастичної задачі (3.7) - (3.9) в загальному випадку пов'язано зі значними труднощами. Однак у випадку, коли простір Неможливо розібрати вираз (невідома помилка): \Omega

елементарних подій складається зі скінченого числа Неможливо розібрати вираз (невідома помилка): (r)
елементів, ймовірність яких задана, розв'язок спрощується. Побудова опуклої оболонки множини

Неможливо розібрати вираз (невідома помилка): Y={{y_i=\psi_i(\omega,x),\;i=0,1,...,m,\;x\in X}},


можна уявити у вигляді двохетапної операції. На початку будуються опуклі оболонки множини Неможливо розібрати вираз (невідома помилка): Y

при фіксованих значеннях Неможливо розібрати вираз (невідома помилка): \omega

, а потім у відповідності з дискретною ймовірнісною мірою на Неможливо розібрати вираз (невідома помилка): \Omega

визначається опукла комбінація множин, побудованих на першому етапі.







Виконала: Юрченко Тетяна Сергіївна

Доповнювала: Татьяненко Марина Олександрівна