Відмінності між версіями «Косинус та синус перетворення Фур'є»
Рядок 2: | Рядок 2: | ||
:'''1'''.Нехай функція <math>f(x)</math>-парна,<math>f(t)cos (\alpha\ t)</math>-парна,тоді:<math>{A(\alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)cos(\alpha\ t)dt</math> | :'''1'''.Нехай функція <math>f(x)</math>-парна,<math>f(t)cos (\alpha\ t)</math>-парна,тоді:<math>{A(\alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)cos(\alpha\ t)dt</math> | ||
:<math>f(t)sin(\alpha\ t)</math>-непарна,тоді:<math>{B(\alpha)}=0;f(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}</math>; | :<math>f(t)sin(\alpha\ t)</math>-непарна,тоді:<math>{B(\alpha)}=0;f(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}</math>; | ||
− | :Якщо функція f(x)-довільна,визначена на проміжку <math>(0;\infty)</math>,то парне продовження цієї функції <math> | + | :Якщо функція f(x)-довільна,визначена на проміжку <math>(0;\infty)</math>,то парне продовження цієї функції <math>{f(x) = \begin{cases}f(x) |
− | f(x),& x | + | , & \mbox{x}\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}}</math> |
− | + | ||
− | \end{cases}</math> розвинення парного продовження: | + | розвинення парного продовження: |
:<math>f_2(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}</math> | :<math>f_2(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}</math> | ||
:Для будь-якого <math>x>=0</math>;<math>f(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}</math>(*) | :Для будь-якого <math>x>=0</math>;<math>f(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}</math>(*) | ||
Рядок 22: | Рядок 22: | ||
:<math>f(x)=\int_0^\infty {B(\alpha)}sin (\alpha\ x){d(\alpha)}</math>(**) | :<math>f(x)=\int_0^\infty {B(\alpha)}sin (\alpha\ x){d(\alpha)}</math>(**) | ||
:Розглянемо формулу (*),тоді отримаємо: | :Розглянемо формулу (*),тоді отримаємо: | ||
− | :<math>f(x)=\sqrt | + | :<math>f(x)={ \sqrt\(\frac{2}{\pi})</math>; |
:<math>{F(\alpha)}=\int_0^\infty f(t)cos(\alpha\ t)dt</math>називаэться '''<font color='green' size=3>Косинус-перетворенням</font>'''функції<math>f(x)</math>,а функція називається '''<font color='red' size=3>Оберненим косинус-перетворенням</font>'''для <math>f(x)</math> | :<math>{F(\alpha)}=\int_0^\infty f(t)cos(\alpha\ t)dt</math>називаэться '''<font color='green' size=3>Косинус-перетворенням</font>'''функції<math>f(x)</math>,а функція називається '''<font color='red' size=3>Оберненим косинус-перетворенням</font>'''для <math>f(x)</math> | ||
:Аналогічно вводится пряме та обернене синус-перетворення<math>f(x)</math> | :Аналогічно вводится пряме та обернене синус-перетворення<math>f(x)</math> |
Версія за 11:34, 20 травня 2010
- Розглянемо часткові випадки:
- 1.Нехай функція Неможливо розібрати вираз (невідома помилка): f(x)
-парна,Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -парна,тоді:Неможливо розібрати вираз (невідома помилка): {A(\alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)cos(\alpha\ t)dt
- Неможливо розібрати вираз (невідома помилка): f(t)sin(\alpha\ t)
-непарна,тоді:Неможливо розібрати вираз (невідома помилка): {B(\alpha)}=0;f(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}
- Якщо функція f(x)-довільна,визначена на проміжку Неможливо розібрати вираз (невідома помилка): (0;\infty)
,то парне продовження цієї функції Неможливо розібрати вираз (невідома помилка): {f(x) = \begin{cases}f(x) , & \mbox{x}\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}}
розвинення парного продовження:
- Неможливо розібрати вираз (невідома помилка): f_2(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}
- Для будь-якого Неможливо розібрати вираз (невідома помилка): x>=0
- Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {A(\alpha)}cos (\alpha\ x){d(\alpha)}
(*)
- 2.Нехай Неможливо розібрати вираз (невідома помилка): f(x)
-непарна,тоді Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -непарна,Неможливо розібрати вираз (невідома помилка): f(t)sin (\alpha\ t) -парна;Неможливо розібрати вираз (невідома помилка): {A(\alpha)}=0
- Неможливо розібрати вираз (невідома помилка): {B(\alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)sin(\alpha\ t)dt
- Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}
Якщо функція Неможливо розібрати вираз (невідома помилка): f(x) -довільна,визначена на проміжку Неможливо розібрати вираз (невідома помилка): (0;\infty) , тоді непарне продовження буде:
- Неможливо розібрати вираз (невідома помилка): f_1(x) = \begin{cases} f(x), & x > 0 \\ 0, & x = 0 \\ f(-x), & x < 0 \end{cases},\
- розвинення непарного продовження:
- Неможливо розібрати вираз (невідома помилка): f_1(x)=\int_0^\infty {B(\alpha)}sin (\alpha\ x){d(\alpha)}
- Для будь-якогоНеможливо розібрати вираз (невідома помилка): x>=0
- Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {B(\alpha)}sin (\alpha\ x){d(\alpha)}
(**)
- Розглянемо формулу (*),тоді отримаємо:
- Неможливо розібрати вираз (невідома помилка): f(x)={ \sqrt\(\frac{2}{\pi})
- Неможливо розібрати вираз (невідома помилка): {F(\alpha)}=\int_0^\infty f(t)cos(\alpha\ t)dt
називаэться Косинус-перетвореннямфункціїНеможливо розібрати вираз (невідома помилка): f(x) ,а функція називається Оберненим косинус-перетвореннямдля Неможливо розібрати вираз (невідома помилка): f(x)
- Аналогічно вводится пряме та обернене синус-перетворенняНеможливо розібрати вираз (невідома помилка): f(x)
- Зауваження:
- В деякій літературі пряме синус та косинус-перетворення вводиться з Неможливо розібрати вираз (невідома помилка): (\frac{2}{\pi})
,а оберене з 1.
- Функція Неможливо розібрати вираз (невідома помилка): f(x)
називають їїОригіналом,а функції називають ОбразомфункціїНеможливо розібрати вираз (невідома помилка): f(x)
у просторі відповідного перетворення.
- Додаткова інформація
- При кутовій зміні частоті,змінюється і циклічна частота при цьому косинус-перетвореняя представляє наступні дві формули:
- Неможливо розібрати вираз (невідома помилка): g_c(w)=2\int_0^\infty f(t)cos({2\pi}ft)dt
- Неможливо розібрати вираз (невідома помилка): f(t)=(\frac{1}{\pi})\int_0^\infty g_c(f)cos({2\pi}ft)df
- Якщо наша функція Неможливо розібрати вираз (невідома помилка): f(x)
визначена на інтерваліНеможливо розібрати вираз (невідома помилка): (-L/2,L/2) ,то модель Фур'є буде:
- Неможливо розібрати вираз (невідома помилка): f(x)=a_0/(2)+\sum^{\infin}_{k=1}(a_k cos({2\pi}kx)/L)+b_k sin({2\pi}kx)/L)
- Так як визначено у формулі основна частота цієї Неможливо розібрати вираз (невідома помилка): \Delta f=1/L
і всіх вищих гармонік частоти Неможливо розібрати вираз (невідома помилка): f_k
є цілими кратними основної частоти.Тобто,Неможливо розібрати вираз (невідома помилка): f_k=k/L=k\Delta f .
- Зараз ми стикаємось з перспективою даючи Неможливо розібрати вираз (невідома помилка): (L \to 0)
з якого слідує,що Неможливо розібрати вираз (невідома помилка): \Delta f\to 0
і, отже, поняття гармонійної частоти перестане бути корисним.
- Для того, щоб врятувати ситуацію, ми повинні відокремлювати поняття фізичної частоти і номер гармоніки. Щоб зробити це, ми першим позначемо зміни, з тим, що ми можемо лікувати коефіцієнти Фур'є в залежності від частоти змінного Неможливо розібрати вираз (невідома помилка): F_k
,яка приймає дискретні значення, кратні ΔF. Таким чином попереднє рівняння буде мати вигляд:
- Неможливо розібрати вираз (невідома помилка): f(x)=a_0/(2)+\sum^{\infin}_{k=1}(a(f_k)cos({2\pi}x f_k)+b(f_k)sin({2\pi}x f_k)
- Також є такі формули косинус та синус перетворення Фур'є
- Косинус-перетворення Фур'є
- Неможливо розібрати вираз (невідома помилка): F_c(\varphi)={\sqrt{\frac{2}\pi}}\int_0^\infty f(t)e^{-i\varphi t}dt
- Синус-перетворення Фур'є
- Неможливо розібрати вираз (невідома помилка): F_s(\varphi)={\sqrt{\frac{2}\pi}}\int_0^\infty f(t)sin(\varphi)dt