Відмінності між версіями «Косинус та синус перетворення Фур'є»
Рядок 24: | Рядок 24: | ||
:'''''Зауваження''''': | :'''''Зауваження''''': | ||
:Пряме синус та косинус-перетворення з <math>(\frac{2}{\pi})</math>,а оберене з 1 та навпаки. | :Пряме синус та косинус-перетворення з <math>(\frac{2}{\pi})</math>,а оберене з 1 та навпаки. | ||
− | :Функція <math>f(x)</math>називають її'''<font color=' | + | :Функція <math>f(x)</math>називають її'''<font color='yellow' size=3>Оригіналом</font>''',а функції називають '''<font color='yellow' size=3>Образами</font>'''функцій<math>f(x)</math>відносно перетворення. |
'''<font color='blue' size=3>Косинус і синус інтеграли Фур'є</font>''',породжені дійсною функцією f(t),абсолютна величина якої <math>{\shortmid f(t)\shortmid}</math>інтегрує по інтервалу <math>{0<t<+\infty}</math>,визначається відповідно так: | '''<font color='blue' size=3>Косинус і синус інтеграли Фур'є</font>''',породжені дійсною функцією f(t),абсолютна величина якої <math>{\shortmid f(t)\shortmid}</math>інтегрує по інтервалу <math>{0<t<+\infty}</math>,визначається відповідно так: |
Версія за 07:41, 18 травня 2010
- Розглянемо часткові випадки:
- 1.Нехай функція Неможливо розібрати вираз (невідома помилка): f(x)
-парна,Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -парна,тоді:Неможливо розібрати вираз (невідома помилка): {A(alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)cos(\alpha\ t)dt
- Неможливо розібрати вираз (невідома помилка): f(t)sin(\alpha\ t)
-непарна,тоді:Неможливо розібрати вираз (невідома помилка): {B(alpha)}=0;f(x)=\int_0^\infty {A(alpha)}cos (\alpha\ x){d(alpha)}
- Якщо функція f(x)-довільна,визначена на проміжку (0; ,то парне продовження цієї функції Неможливо розібрати вираз (невідома помилка): f_2(x)= \begin{cases} f(x),& x \geqslant 0\\ f(-x), & x < 0
розвинення парного продовження:
- Неможливо розібрати вираз (невідома помилка): f_2(x)=\int_0^\infty {A(alpha)}cos (\alpha\ x){d(alpha)}
- Для будь-якого Неможливо розібрати вираз (невідома помилка): x>=0
- Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {A(alpha)}cos (\alpha\ x){d(alpha)}
(*)
- 2.Нехай Неможливо розібрати вираз (невідома помилка): f(x)
-непарна,тоді Неможливо розібрати вираз (невідома помилка): f(t)cos (\alpha\ t) -непарна,Неможливо розібрати вираз (невідома помилка): f(t)sin (\alpha\ t) -парна;Неможливо розібрати вираз (невідома помилка): {A(alpha)}=0
- Неможливо розібрати вираз (невідома помилка): {B(alpha)}=(\frac{2}{\pi})\int_0^\infty f(t)sin(\alpha\ t)dt
- Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}
Якщо функція Неможливо розібрати вираз (невідома помилка): f(x) -довільна,визначена на проміжку,тоді непарне продовження буде
- Неможливо розібрати вираз (невідома помилка): f(x) = \begin{cases} f(x), & x > 0 \\ 0, & x = 0 \\ f(-x), & x < 0 \end{cases},\ розвинення непарногопродовження: :<math>f_1(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}
- Для будь-якогоНеможливо розібрати вираз (невідома помилка): x>=0
- Неможливо розібрати вираз (невідома помилка): f(x)=\int_0^\infty {B(alpha)}sin (\alpha\ x){d(alpha)}
(**)
- Розглянемо формулу (*),тоді отримаємо:
- Неможливо розібрати вираз (невідома помилка): f(x)={ \sqrt{2}\frac}{pi}\\
- Неможливо розібрати вираз (невідома помилка): {F(alpha)}=\int_0^\infty f(t)cos(\alpha\ t)dt
називаэться Косинус-перетвореннямфункціїНеможливо розібрати вираз (невідома помилка): f(x) ,а функція називається Оберненим косинус-перетвореннямдля Неможливо розібрати вираз (невідома помилка): f(x)
- Аналогічно вводится пряме та обернене синус-перетворенняНеможливо розібрати вираз (невідома помилка): f(x)
- Зауваження:
- Пряме синус та косинус-перетворення з Неможливо розібрати вираз (невідома помилка): (\frac{2}{\pi})
,а оберене з 1 та навпаки.
- Функція Неможливо розібрати вираз (невідома помилка): f(x)
називають їїОригіналом,а функції називають ОбразамифункційНеможливо розібрати вираз (невідома помилка): f(x) відносно перетворення.
Косинус і синус інтеграли Фур'є,породжені дійсною функцією f(t),абсолютна величина якої Неможливо розібрати вираз (невідома помилка): {\shortmid f(t)\shortmid} інтегрує по інтервалу Неможливо розібрати вираз (невідома помилка): {0<t<+\infty} ,визначається відповідно так: