Відмінності між версіями «Ігрова постановка задач СП.»
194668 (обговорення • внесок) |
194668 (обговорення • внесок) |
||
Рядок 29: | Рядок 29: | ||
<font size=3> В задачах управління в умовах ризику функція <math> F_{A,b,c} </math> відома заздалегідь і множина <math> \tilde{T} </math> складається з цього єдиного елементу. Залежно від того, як обирається множина <math>M</math> планів задачі, отримаємо різні постановки задач стохастичного програмування. Зокрема, якщо в якості множини <math> M </math> взяти область </font> | <font size=3> В задачах управління в умовах ризику функція <math> F_{A,b,c} </math> відома заздалегідь і множина <math> \tilde{T} </math> складається з цього єдиного елементу. Залежно від того, як обирається множина <math>M</math> планів задачі, отримаємо різні постановки задач стохастичного програмування. Зокрема, якщо в якості множини <math> M </math> взяти область </font> | ||
− | <font size=3> | + | <font size=3> <math> \{x: P[A(\omega)x \leq b(\omega)]\} \geq \alpha, 0\le\alpha\le1 </math>, </font> |
− | <font size=3> отримаємо задачу з імовірнісними обмеженнями. | + | <font size=3> отримаємо задачу з імовірнісними обмеженнями. </font> |
− | <font size=3> | + | <font size=3> Розв’язком цієї задачі є детермінований план <math> x </math>, тобто оптимальна стратегія першого гравця – чиста стратегія. </font> |
− | <font size=3> Нехай і раніше S – множина мішаних стратегій першого гравця – множина допустимих розподілів | + | <font size=3> Нехай і раніше <math> S </math> – множина мішаних стратегій першого гравця – множина допустимих розподілів <math>F_x</math> вектора <math>x</math>, а <math>T</math> – множина мішаних стратегій природи – множина розподілів <math> F_{\omega} </math> випадкових параметрів умов задачі. При досить загальних умовах існує розв’язок гри в мішаних стратегіях, тобто існує сідлова точка функції плати: </font> |
<font size=3> </font> | <font size=3> </font> | ||
− | <font size=3> Іншими словами, існують мішані стратегії F_x^* | + | <font size=3> Іншими словами, існують мішані стратегії <math> F_x^*\in S </math> та <math> F_{A,b,c}^*\in \tilde{T} </math> (<math> \tilde{T} </math> – множина, визначена заданими обмеженнями на допустимі мішані стратегії природи), такі, що </font> |
<font size=3> </font> | <font size=3> </font> | ||
− | <font size=3> Оптимальна стратегія F_x^* першого гравця являє собою апріорний розв’язувальний розподіл задачі стохастичного програмування в ігровій постановці. </font> | + | <font size=3> Оптимальна стратегія <math> F_x^* </math> першого гравця являє собою апріорний розв’язувальний розподіл задачі стохастичного програмування в ігровій постановці. </font> |
<font size=3> Особливий інтерес, природно, викликають випадки, коли можна отримати розв’язок в чистих стратегіях. </font> | <font size=3> Особливий інтерес, природно, викликають випадки, коли можна отримати розв’язок в чистих стратегіях. </font> | ||
− | <font size=3> Теорема 2.1. Нехай непорожня множина | + | <font size=3> '''Теорема 2.1.''' Нехай непорожня множина <math> \tilde{T} </math> опукла та слабкокомпактна, <math> \phi_i, i=1,...,m. </math> опуклі, а ψ_0 (ω,x) та φ_i [ψ_i (ω,x) ],i=1,…,m рівномірно (по <math> F_{\omega}\in \tilde{T} </math>) інтегровані для всіх <math> x\in X = \{x\geq0\} </math>. Тоді </font> |
<font size=3> </font> | <font size=3> </font> | ||
− | <font size=3> Оптимальна чиста стратегія | + | <font size=3> Оптимальна чиста стратегія <math> x^* </math> першого гравця являє собою апріорне розв’язувальне правило задачі стохастичного програмування в ігровій постановці. </font> |
[[Файл:Postanovka.png]]; | [[Файл:Postanovka.png]]; |
Версія за 18:24, 3 червня 2017
Зазвичай в задачах стохастичного програмування спільний розподіл випадкових параметрів умов задачі припускається заданим. В тих випадках, коли за тими чи іншими міркуваннями визначення спільного розподілу випадкових початкових даних не є можливим, стохастична задача може бути розглянута як гра двох осіб з нульовою сумою.
Першим є гравець, який приймає рішення. Він прагне звести до мінімуму середню плату за гру. Йому протистоїть природа, що обирає свої стани, виходячи з тенденції максимізувати середню плату першого гравця. При кожному стані природи та виборі стратегії х першого гравця, функція плати задається як сума відповідних значень лінійної форми задачі та штрафу за нев’язку плану.
Неможливо розібрати вираз (невідома помилка): g[x,A(\omega),b(\omega),c(\omega)]=\sum^{n}_{j=1} c_j(\omega)x_j + \sum^{m}_{i=1} \phi_i \left[\sum^{n}_{j=1} a_{ij}(\omega)x_j-b_i(\omega)\right] \
(2.1)
де Неможливо розібрати вираз (невідома помилка): \phi_i(y),(i=1,2,...,m)
– неперервна неспадна функція Неможливо розібрати вираз (невідома помилка): y
, що дорівнює нулю при Неможливо розібрати вираз (невідома помилка): y \leq 0 .
У термінах теорії ігор план початкової задачі інтерпретується як чиста стратегія першого гравця. Позначимо задану множину чистих стратегій того, хто приймає рішення через Неможливо розібрати вираз (невідома помилка): M . Множина Неможливо розібрати вираз (невідома помилка): \Omega
станів природи визначає множину Неможливо розібрати вираз (невідома помилка): N евклідового простору розмірності Неможливо розібрати вираз (невідома помилка): mn+m+n
, що відповідає допустимій області змін елементів Неможливо розібрати вираз (невідома помилка): a_{ij}(\omega),b_i (\omega),c_j (\omega)
умов задачі.
Позначимо через Неможливо розібрати вираз (невідома помилка): S
множину мішаних стратегій першого гравця, тобто множину розподілів Неможливо розібрати вираз (невідома помилка): F_x вектора Неможливо розібрати вираз (невідома помилка): x
, визначених на Неможливо розібрати вираз (невідома помилка): M , а через Неможливо розібрати вираз (невідома помилка): T
– множину мішаних стратегій другого гравця – природи, тобто множину спільних розподілів Неможливо розібрати вираз (невідома помилка): F_{A,b,c} матриці Неможливо розібрати вираз (невідома помилка): A(\omega) та векторів Неможливо розібрати вираз (невідома помилка): b(\omega) та Неможливо розібрати вираз (невідома помилка): c(\omega)
, визначених на Неможливо розібрати вираз (невідома помилка): N . У тих випадках, коли розподіл частини параметрів відомий, розглядаються лише ті мішані стратегії, в яких розподіл цих параметрів збігається з відомим. Нехай вони утворюють множину Неможливо розібрати вираз (невідома помилка): \tilde{T} \subset T .
У прийнятих позначеннях ігрова постановка задачі стохастичного програмування (задачі управління в умовах часткової невизначеності) може бути сформульована таким чином.
Потрібно обчистити такі мішані стратегії Неможливо розібрати вираз (невідома помилка): F_x^*\in S
та Неможливо розібрати вираз (невідома помилка): F_{A,b,c}^*\in \tilde{T}
, що
При досить загальних умовах (компактності множин Неможливо розібрати вираз (невідома помилка): M
та Неможливо розібрати вираз (невідома помилка): N
) існують Неможливо розібрати вираз (невідома помилка): F_x^*\in S
та Неможливо розібрати вираз (невідома помилка): F_{A,b,c}^*\in \tilde{T}
, на яких досягається розв’язок гри.
Зазвичай розглядають два крайніх випадки задачі управління в умовах часткової невизначеності: задачу вибору рішення в умовах невизначеності та задачу вибору розв’язку в умовах ризику. Перша постановка відповідає випадку, коли про спільне розподіл Неможливо розібрати вираз (невідома помилка): F_{A,b,c}
параметрів умов задачі заздалегідь нічого невідомо. У цьому випадку Неможливо розібрати вираз (невідома помилка): T \equiv \tilde{T} являє собою безліч всіляких розподілів, визначених на Неможливо розібрати вираз (невідома помилка): N
, і розв’язок Неможливо розібрати вираз (невідома помилка): F_x^*
стохастичної задачі визначає, взагалі кажучи, мішану стратегію.
В задачах управління в умовах ризику функція Неможливо розібрати вираз (невідома помилка): F_{A,b,c}
відома заздалегідь і множина Неможливо розібрати вираз (невідома помилка): \tilde{T} складається з цього єдиного елементу. Залежно від того, як обирається множина Неможливо розібрати вираз (невідома помилка): M планів задачі, отримаємо різні постановки задач стохастичного програмування. Зокрема, якщо в якості множини Неможливо розібрати вираз (невідома помилка): M взяти область
Неможливо розібрати вираз (невідома помилка): \{x: P[A(\omega)x \leq b(\omega)]\} \geq \alpha, 0\le\alpha\le1 ,
отримаємо задачу з імовірнісними обмеженнями.
Розв’язком цієї задачі є детермінований план Неможливо розібрати вираз (невідома помилка): x , тобто оптимальна стратегія першого гравця – чиста стратегія.
Нехай і раніше Неможливо розібрати вираз (невідома помилка): S
– множина мішаних стратегій першого гравця – множина допустимих розподілів Неможливо розібрати вираз (невідома помилка): F_x вектора Неможливо розібрати вираз (невідома помилка): x
, а Неможливо розібрати вираз (невідома помилка): T
– множина мішаних стратегій природи – множина розподілів Неможливо розібрати вираз (невідома помилка): F_{\omega} випадкових параметрів умов задачі. При досить загальних умовах існує розв’язок гри в мішаних стратегіях, тобто існує сідлова точка функції плати:
Іншими словами, існують мішані стратегії Неможливо розібрати вираз (невідома помилка): F_x^*\in S
та Неможливо розібрати вираз (невідома помилка): F_{A,b,c}^*\in \tilde{T} (Неможливо розібрати вираз (невідома помилка): \tilde{T} – множина, визначена заданими обмеженнями на допустимі мішані стратегії природи), такі, що
Оптимальна стратегія Неможливо розібрати вираз (невідома помилка): F_x^*
першого гравця являє собою апріорний розв’язувальний розподіл задачі стохастичного програмування в ігровій постановці.
Особливий інтерес, природно, викликають випадки, коли можна отримати розв’язок в чистих стратегіях.
Теорема 2.1. Нехай непорожня множина Неможливо розібрати вираз (невідома помилка): \tilde{T}
опукла та слабкокомпактна, Неможливо розібрати вираз (невідома помилка): \phi_i, i=1,...,m. опуклі, а ψ_0 (ω,x) та φ_i [ψ_i (ω,x) ],i=1,…,m рівномірно (по Неможливо розібрати вираз (невідома помилка): F_{\omega}\in \tilde{T}
) інтегровані для всіх Неможливо розібрати вираз (невідома помилка): x\in X = \{x\geq0\} . Тоді
Оптимальна чиста стратегія Неможливо розібрати вираз (невідома помилка): x^*
першого гравця являє собою апріорне розв’язувальне правило задачі стохастичного програмування в ігровій постановці.