Відмінності між версіями «Мікросхеми»
3494552 (обговорення • внесок) (→Сфера застосування) |
3494552 (обговорення • внесок) (→Технічні характеристики) |
||
Рядок 67: | Рядок 67: | ||
5 - розділені без втрати орієнтування (наприклад, наклеєні на плівку); | 5 - розділені без втрати орієнтування (наприклад, наклеєні на плівку); | ||
6 - з контактними майданчиками без висновків (кристал). | 6 - з контактними майданчиками без висновків (кристал). | ||
− | <ref name="Л5"> | + | <ref name="Л5">Жан М. Рабаі, Ананта Чандракасан, Борівож Ніколич. Цифрові інтегральні схеми. Методологія проектування = Digital Integrated Circuits. — 2-е вид. — М.: Вільямс, 2007. — 912 с </ref> |
==Сфера застосування == | ==Сфера застосування == |
Версія за 14:41, 24 травня 2017
Роботу виконує Магденко Вадим 32гр Бородій Сергій 32гр
Зміст
Загальний опис (принцип дії)
Мікросхема, інтегральна мікросхема — електронна схема, що реалізована у вигляді напівпровідникового кристалу (чіпу) та виконує певну функцію. Чіп — напівпровідникова структура, на поверхні якої сформовані контактні площинки. Часто під інтегральною схемою (ІС) розуміють власне кристал або плівку з електронною схемою, а під мікросхемою (МС) — ІС в корпусі. [1]
Історична довідка
У 1947 Вільям Шоклі, Джон Бардін і Уолтер Братейн у лабораторії Bell Labs вперше створили діючий біполярний транзистор , продемонстрований 16 грудня того ж року. [2]
23 грудня 1947 року відбулося офіційне представлення винаходу, і саме ця дата вважається днем народження транзистора. У 1956 році Шоклі, Бардін і Братейн були нагороджені Нобелівською премією з фізики «за дослідження напівпровідників і відкриття транзисторного ефекту». Згодом Джон Бардін став єдиним за всю історію «нобелівки» двічі лауреатом в одній і тій же номінації: друга премія в галузі фізики була присуджена йому в 1972 році за створення теорії надпровідності. Застосування транзисторів, що дозволило значно зменшити габарити і енергоспоживання радіоелектронних пристроїв. З'явилося безліч портативних пристроїв: радіоприймачі, магнітофони, телевізори, плеєри, радіостанції і т. п. Але технічний прогрес не міг на цьому зупинитися... У повітрі витала ідея: а чи не можна на основі одного (загального) напівпровідникового кристала створити два (і більше) транзистора? Кілбі, спираючись на розроблений Куртом Леховеком принцип ізоляції електронних компонентів p-n-переходами, в липні 1958 року розробив початкову концепцію, а 12 вересня 1958 року представив першу працездатну модель інтегральної мікросхеми. Вона містила один-єдиний транзистор, декілька резисторів і конденсатор. Примітивно, але свою пробну задачу – вивести синусоїдальну хвилю на екран осцилографа – вона виконала.
Технічні характеристики
Залежно від технології виготовлення інтегральні мікросхеми бувають напівпровідникові, плівкові та гібридні. Напівпровідникові інтегральні мікросхеми — це єдиний кристал напівпровідника, локальні зони якого виконують функції активних (транзис¬торних) і пасивних елементів. Між цими зонами є електричні з'єднання та ізоляційні площадки. Напівпровідникові інтегральні мікросхеми мають досить високий рівень інтеграції (понад 104 елементів в 1 см3) і забезпечу¬ють найвищу надійність радіоелектронних пристроїв, зводячи до мінімуму кількість зовнішніх з’єднань та монтажних операцій. Плівкові інтегральні мікросхеми виконують у вигляді, різноманітних за товщиною, складом і конфігурацією плівок, нанесених на поверхню діелектричної підкладки. Бувають тонко- та товстоплівкові мікросхеми, але самостійного значення вони не мають, оскільки за цією технологією поки що не можна виготовити n -р-переходи. Гібридні інтегральні мікросхеми —- це поєднання плівкових пасивних елементів (резисторів, конденсаторів) і дискретних напівпровідникових. У них спочатку на підкладці з діелектрика формують резистори, конден¬сатори, струмопровідні смужки, контактні площадки, а потім до цих пло¬щадок приєднують безкорпусні кремнієві транзистори та діоди. За характером виконуваних функцій інтегральні мікросхеми можна поділити на аналогові та цифрові. Аналогові інтегральні мікросхеми застосовують для перетворення електричних сигналів, що змінюються за законами неперервних функцій. Основу побудови більшості з них складають підсилювачі, на базі яких приєднанням зовнішніх дискретних елементів створюють різноманітні селектор¬ні схеми, перетворювачі, генератори сигналів, інші схеми радіоелектро¬ніки. Цифрові інтегральні мікросхеми використовують для перетворення й оброблення дискретних електричних сигналів. В основу їх побудови покладено технічну реалізацію операцій математичної логіки — диз'юнкції, кон'юнкції та інверсії. Різноманітне поєднання між собою цих базових логічних елементів забезпечує побудову запам'ятовувальних, обчислювальних, комутувальних, керувальних, перетворювальних та інших еле¬ментів сучасної автоматики й обчислювальної техніки. Крім того, деякі цифрові інтегральні мікросхеми можна застосовувати для побудови прист¬роїв аналогової техніки, а також для перетворення електричних сигналів з аналогової форми на цифрову і навпаки. [3] Аналогові мікросхеми застосовувалися і застосовуються в апаратурі звукопідсилення та звуковідтворення, відеомагнітофонах, телевізорах, техніці зв'язку, вимірювальних приладах, аналогових обчислювальних машинах (АВМ), вторинних джерелах електроживлення і т. д.
Приймач на одній мікросхемі К118УС1Б (К118УН1Б) або К122УС1Б (К122УН1Б):
Цифрові мікросхеми призначені, відповідно, для обробки дискретних (переривчастих) сигналів. Також можна сказати, що вхідний і вихідний сигнали таких мікросхем змінюються дискретно, або, висловлюючись науково, за законом дискретної функції
Мікросхеми даного типу застосовуються для побудови цифрових обчислювальних машин (ЦОМ), а також цифрових вузлів вимірювальних приладів, апаратури автоматичного управління, зв'язку і т. д.
Схема імітації почергово миготливих світлофорів
СТУПІНЬ ІНТЕГРАЦІЇ
Колись давно в СРСР були запропоновані наступні назви мікросхем у залежності від ступеня інтеграції: мала інтегральна схема (МІС) — до 100 елементів у кристалі; середня інтегральна схема (СІС) — до 1000 елементів в кристалі; велика інтегральна схема (БІС) — до 10000 елементів в кристалі; надвелика інтегральна схема (НВІС) — до 1 мільйона елементів в кристалі; ультравелика інтегральна схема (УБІС) — до 1 мільярда елементів в кристалі; гігавелика інтегральна схема (ГВІС) — більше 1 мільярда елементів в кристалі.
В даний час назва ГВІС практично не використовується (наприклад, останні версії процесорів Pentium 4 містили кілька сотень мільйонів транзисторів), і всі схеми з числом елементів, що перевищують 10 000, відносять до класу ЗВІС, вважаючи УБІС його підкласом. [4]
Умовні позначення мікросхем.
У позначення можуть бути введені додаткові символи (від А до Я), що визначають допуски на розкид параметрів мікросхем. Перед першим елементом позначення можуть стояти наступні букви: К - для апаратури широкого застосування; Е - на експорт (крок висновків 2,54 і 1,27 мм); Р - пластмасовий корпус другого типу; М - керамічний, метало- або склокерамічний корпус другого типу; Е - металополімерний корпус другого типу; А - пластмасовий корпус четвертого типу; І - склокерамічний корпус четвертого типу Н - крісталлоносітель. Для безкорпусних інтегральних мікросхем перед номером серії може додаватися буква Б, а після неї, або після додаткового літерного позначення через дефіс вказується цифра, яка характеризує модифікацію конструктивного виконання: 1 - з гнучкими висновками; 2 - з стрічковими висновками; 3 - з жорсткими висновками; 4 - на загальній пластині (нерозділені); 5 - розділені без втрати орієнтування (наприклад, наклеєні на плівку); 6 - з контактними майданчиками без висновків (кристал). [5]
Сфера застосування
Мікроелектроніка проникла навіть в організм людини: в медицині вона дозволяє створювати унікальні прилади високої чутливості для вимірювання тиску, біологічних тестів і навіть дослідження ДНК. З допомогою мікротехнологій вживляють імплантати. Наприклад, сліпим людям лікарі можуть частково повернути зір. Для самостійного контролю здоров'я винайшли мікрочіп, який нагадує звичайний пластир. Він клеїться на шкіру і складається з декількох сенсорів, які реєструють інформацію про температуру тіла, серцебитті, активності мозку і реакції на ультрафіолетове випромінювання. Ці відомості безпосередньо надходять у телефон. Таким чином, людина може щохвилини контролювати свій стан. Це є один з напямків застосування мікросхем. [6] На будь-який сучасний електронний пристрій ви б не спрямували свій погляд, майже на 100% ви знайдете в ньому цифрові мікросхеми . Візьмемо в якості прикладу побутові прилади: праска, пральна машина, мікрохвильова піч, посудомийна машина, холодильник, електрична та газова плита, електрочайник, телевізор, відеокамера, музичний центр, диктофон, фотоапарат, МР3-плеєр, фотоапарат, мобільний телефон, фоторамка, калорифер, домашня метеостанція, люстра з ДУ – всі вони містять мікропроцесори, мікроконтролери і, можливо, відповідні чіпсети. Крім того, автонавігатори, відеореєстратори, пристрої сигналізації, бортові автокомпьютеры, планшетники, ноутбуки, модеми, супутникові ресивери – всього і не перерахуєш... Різні мікросхеми містять різну кількість електронних компонентів, отже, мають різну ступінь інтеграції.
Фото, відео-матеріали
Список використаних джерел
- ↑ Мікросхема
- ↑ Історична довідка
- ↑ Технічні характеристики
- ↑ Ступінь інтеграції
- ↑ Жан М. Рабаі, Ананта Чандракасан, Борівож Ніколич. Цифрові інтегральні схеми. Методологія проектування = Digital Integrated Circuits. — 2-е вид. — М.: Вільямс, 2007. — 912 с
- ↑