|
|
(не показано 4 проміжні версії 3 учасників) |
Рядок 1: |
Рядок 1: |
| '''Адресація комп'ютерів.''' | | '''Адресація комп'ютерів.''' |
| | | |
− | На відміну від фізичних MAC–адрес, формат яких залежить від конкретної мережної архітектури, IP–адреса будь–якого вузла мережі є чотирибайтовим числом. Записуються IP–адреси чотирма числами в діапазоні від 0 до 255, які представляються в двійковій, вісімковій, десятковій або шістнадцятковій системах числення та розділяються крапками (наприклад 192.168.40.250). Для більш ефективного використання єдиного адресного простору Internet введено класи мереж:
| + | Проблемою, яку треба враховувати при об'єднанні трьох і більше комп'ютерів, є проблема їх адресації. |
− | | + | |
− | <ul type=disc> <li class=MsoNormal >'''Мережі класу A (''' 1–126) мають 0 в старшому біті адрес. На мережну адресу відводиться 7 молодших бітів першого байта, на гост–частину – 3 байти. Таких мереж може бути 126 з 16 мільйонами вузлів у кожній. </li>
| + | |
− | | + | |
− | <li class=MsoNormal >'''Мережі класу B''' (128–191) мають 10 у двох старших бітах адрес. На мережну адресу відводиться 6 молодших бітів першого байта та другий байт, на гост–частину – 2 байти. Таких мереж може бути близько 16 тисяч з 65 тисячами вузлів в кожній. </li>
| + | |
− | | + | |
− | <li class=MsoNormal >'''Мережі класу C''' (192–223) мають 110 у трьох старших бітах адрес. На мережну адресу відводиться 5 молодших бітів першого байта та другий і третій байт, на гост–частину – 1 байт. Таких мереж може бути близько 2 мільйонів з 254 вузлами в кожній. </li> <li class=MsoNormal >'''Мережі класу D''' (224–239) мають 1110 у чотирьох старших бітах адрес. Решта біт є спеціальною груповою адресою. Адреси класу D використовуються у процесі звернення до груп комп'ютерів. </li>
| + | |
− | | + | |
− | <li class=MsoNormal >'''Мережі класу E''' (240–255) зарезервовані на майбутнє. </li> </ul> <br>
| + | |
− | | + | |
− | Для зменшення трафіка в мережах з великою кількістю вузлів застосовується розділення вузлів за підмережами потрібного розміру. Адреса підмережі використовує кілька старших бітів гост–частини IP–адреси, решта молодших бітів – нульові. В цілому IP–адреса складається з адреси мережі, підмережі та локальної гост–адреси, яка є унікальною для кожного вузла. Для виділення номерів мережі, підмережі та госта (вузла) використовується маска підмережі – бітовий шаблон, в якому бітам, що використовуються для адреси підмережі, присвоюються значення 1, а бітам адреси вузла – значення 0. Розглянемо адресу 192.168.40.252 та значення маски 255.255.255.0. У цьому випадку маємо адресу підмережі 192.168.40 та адресу госта – 252. При цьому всі гости підмережі 192.168.40 мають встановити ту ж саму маску підмережі. Отже, мережа 192.168 може мати 256 підмереж з 254 вузлами в кожній. Використання ж маски 255.255.255.192 дасть змогу мати 1024 підмережі з 60 вузлами в кожній. <br>
| + | |
− | Комбінації всіх нулів або всіх одиниць у мережній, підмережній або гост–частині зарезервовані для загальних (broadcast) повідомлень та службових цілей. Наприклад, адреса 192.168.40.255 використовується для загального повідомлення всім вузлам підмережі 192.168.40.
| + | |
− | Кожен xост може мати не тільки IP–адресу, але й ім'я (Host name). Як і цифрові IP–адреси, імена вузлів діляться на частини, що розділяються крапками. Починають запис від імені комп'ютера, далі йдуть імена локальних доменів (груп комп'ютерів) і закінчується ім'я вказанням імен вищих доменів (організаційних та територіальних). Список цих імен зберігається в спеціальній базі даних доменів служби імен [[DNS]] (Domain Name System).
| + | |
− | | + | |
− | Наприклад, ім'я blues.franko.lviv.ua відповідає серверу з іменем Blues у домені franko.lviv.ua комп'ютерів кампусної мережі Львівського державного університету ім. І.Франка. Звертаючись до вузла, з однаковим успіхом можна використати як IP–адресу, так і його ім'я. <br><br>
| + | |
− | [[TCP/IP| Стек TCP/IP]]<br><br>
| + | |
− | | + | |
− | == <b>Маршрутизація в IP–мережах</b> ==
| + | |
− | <br>
| + | |
− | | + | |
− | Термін '''маршрутизація''' (routing) означає передавання дейтаграм від одного вузла іншому. "Пряма" маршрутизація (direct routing) здійснюється між вузлами однієї підмережі. В цьому випадку вузол–відправник знає конкретну фізичну адресу отримувача й інкапсулює IP–дейтаграму у відповідний фрейм мережі. "Непряма" маршрутизація (indirect routing) означає передавання дейтаграм між вузлами різних (під)мереж, що здійснюється маршрутизатром. Виявивши розходження немаскованої (мережної) частини IP–адрес, вузол–відправник направляє фрейм з IP–дейтаграмою за фізичною адресою маршрутизатора.
| + | |
− | | + | |
− | [[Маршрутизатор]] (спеціалізований пристрій або комп’ютер) зберігає таблиці маршрутизації за допомогою яких, якщо відома адреса призначення пакета, можна визначити адресу іншого маршрутизатора або іншої (під)мережі. Після аналізу IP–адреси отримувача маршрутизатор направляє дейтаграму в одну з безпосередньо під'єднаних до нього (під)мереж, або ж – наступному маршрутизатору. Для забезпечення міжмережного обміну всі вузли мережі (зокрема і маршрутизатори) повинні мати списки IP–адрес доступних маршрутизаторів.
| + | |
− | <br>Розташовані на межі локальної (кампусної) та глобальної мереж маршрутизатори називають граничними (Border Gateway). Його таблиці маршрутизації містять інформацію як про внутрішні, так і про зовнішні мережі. Використання граничних маршрутизаторів дає змогу зменшити розміри таблиць внутрішніх маршрутизаторів та підвищити ефективність їхньої роботи.
| + | |
− | Протоколи маршрутизації бувають статичними та динамічними. У статичних протоколах зміни в таблицях маршрутизації робить адміністратор мережі, у динамічних цей процес відбувається автоматично.
| + | |
− | | + | |
− | | + | |
− | Ще однією новою проблемою, яку треба враховувати при об'єднанні трьох і більше комп'ютерів, є проблема їх адресації.
| + | |
| | | |
| До адреси вузла мережі і схемі її призначення можна пред'явити декілька вимог. | | До адреси вузла мережі і схемі її призначення можна пред'явити декілька вимог. |
Рядок 45: |
Рядок 18: |
| Найбільшого розповсюдження отримали три схеми адресації вузлів. | | Найбільшого розповсюдження отримали три схеми адресації вузлів. |
| | | |
| + | == Схеми адресації вузлів == |
| | | |
− | == Класи IP-адрес ==
| + | '''''[[Апаратна адреса]] (hardware).''''' Ці адреси призначені для мережі невеликого або середнього розміру, тому вони не мають ієрархічної структури. Така адреса звичайно використовується тільки апаратурою, наприклад, у мережні адаптери вбудовують шестибайтну, так звану МАС-адресу, під час виготовлення. При установці у комп'ютер декількох адаптерів, він матиме декілька апаратних адрес. Отже апаратна адреса адресує певний інтерфейс підключення до мережі, яка змінюється при заміні мережного адаптера. |
− | IP-адреса має довжину 4 байти й звичайно записується у вигляді чотирьох чисел, що представляють значення кожного байта в десятковій формі й розділених точками, наприклад, 128.10.2.30 - традиційна десяткова форма представлення адреси, а 10000000 00001010 00000010 00011110 - двійкова форма представлення цієї ж адреси.
| + | |
− | Адреса складається із двох логічних частин — номера мережі й номери вузла в мережі. Яка частина адреси відноситься до номера мережі, а яка — до номера вузла, визначається значеннями перших біт адреси. Значення цих біт є також ознаками того, до якого класу відноситься та або інша IP-адреса.
| + | |
− | Якщо адреса починається з 0, то мережу відносять до класу А і номер мережі займає один байт, інші 3 байти інтерпретуються як номер вузла в мережі. Мережі класу А мають номери в діапазоні від 1 до 126. (Номер 0 не використовується, а номер 127 зарезервований для спеціальних цілей, про що буде сказано нижче.) Мереж класу А небагато, зате кількість вузлів у них може досягати 224, тобто 16 777 216 вузлів.
| + | |
− | Якщо перші два біти адреси є 10, то мережа відноситься до класу В. У мережах класу В під номер мережі й під номер вузла виділяється по 16 біт, тобто по 2 байти. Таким чином, мережа класу В є мережею середніх розмірів з максимальним числом вузлів 216, що становить 65 536 вузлів.
| + | |
− | Якщо адреса починається з послідовності 110, то це мережа класу С. У цьому випадку під номер мережі приділяється 24 битка, а під номер вузла — 8 біт. Мережі цього класу найпоширеніші, число вузлів у них обмежено 28, тобто 256 вузлами.
| + | |
− | Якщо адреса починається з послідовності 1110, то вона є адресою класу D і позначає особливу, групову адресу — multicast. Якщо в пакеті як адреса призначення зазначена адреса класу D, то такий пакет повинні отримати всі вузли, яким привласнена дана адреса.
| + | |
− | Якщо адреса починається з послідовності 11110, то це значить, що дана адреса відноситься до класу Е. Адреси цього класу зарезервовані для майбутніх застосувань.
| + | |
| | | |
− | == Схеми адресації вузлів ==
| + | ! тут написати приклад адреси. |
| | | |
− | '''''[[Апаратна адреса]](hardware).''''' Ці адреси призначені для мережі невеликого або середнього розміру, тому вони не мають ієрархічної структури. Така адреса звичайно використовується тільки апаратурою, наприклад, у мережні адаптери вбудовують шестибайтну, так звану МАС-адресу, під час виготовлення. При установці у комп'ютер декількох адаптерів, він матиме декілька апаратних адрес. Отже апаратна адреса адресує певний інтерфейс підключення до мережі, яка змінюється при заміні мережного адаптера. | + | '''''[[Числові адреси]] (складені).''''' Для роботи у великих мережах в якості адрес вузлів використовують числові складені адреси фіксованого і компактного форматів. Типовими представниками адрес цього типу є ІР- та ІРХ-адреси. В них підтримується двохрівнева ієрархія, адреса поділяється на старшу частину - номер мережі та молодшу - номер вузла. Такий поділ дозволяє передавати повідомлення між мережами тільки на підставі номера мережі, а номер вузла використовується тільки після доставки повідомлення у потрібну мережу. В останній час, щоб зробити маршрутизацію у крупних мережах більш ефективною, пропонується більш складні варіанти числової адресації, у відповідності з якими адреса має три і більше складових. Такий підхід реалізований у новій версії протоколу IPv6, призначеного для роботи у мережі Internet. |
| + | |
| + | ! описати приклади мережевих адрес (ІР, ІРХ). |
| | | |
| '''''[[Символьні адреси]] або імена.''''' Ці адреси призначені для запам'ятовування людьми і тому звичайно несуть змістове навантаження. Символьні імена легко використовувати як у невеликих, так і у великих мережах. Для роботи у великих мережах символьне ім'я може мати складну ієрархічну структуру, напрклад, www.cisco.com. | | '''''[[Символьні адреси]] або імена.''''' Ці адреси призначені для запам'ятовування людьми і тому звичайно несуть змістове навантаження. Символьні імена легко використовувати як у невеликих, так і у великих мережах. Для роботи у великих мережах символьне ім'я може мати складну ієрархічну структуру, напрклад, www.cisco.com. |
| | | |
− | '''''[[Числові адреси]](складені).''''' Символьні імена зручні для людей, але з-за змінного формату і потенціально великої довжини їх передача по мережі не дуже економна. Тому у багатьох випадках для роботи у великих мережах в якості адрес вузлів використовують числові складені адреси фіксованого і компактного форматів. Типовими представниками адрес цього типу є ІР- та ІРХ-адреси. В них підтримується двохрівнева ієрархія, адреса поділяється на старшу частину - номер мережі та молодшу - номер вузла. Такий поділ дозволяє передавати повідомлення між мережами тільки на підставі номера мережі, а номер вузла використовується тільки після доставки повідомлення у потрібну мережу. В останній час, щоб зробити маршрутизацію у крупних мережах більш ефективною, пропонується більш складні варіанти числової адресації, у відповідності з якими адреса має три і більше складових. Такий підхід реалізований у новій версії протоколу IPv6, призначеного для роботи у мережі Internet.
| + | ! описати структуру символьних адрес в інтернеті. |
| | | |
| У сучасних мережах для адресації вузлів застосовуються, як правило, одночасно всі три схеми адресації. Користувачі адресують комп'ютери символьними іменами, які автоматично замінюються у повідомленнях, що передаються по мережі, на числові номери. За допомогою цих числових номерів повідомлення передаються з однієї мережі до іншої, а після доставки повідомлення у мережу призначення замість числового номера використовується апаратна адреса комп'ютера. Сьогодні така схема характерна даже для невеликих автономних мереж, де, здавалося б, вона явно зайва - це робиться для того, щоб при під'єднанні цієї мережі до великої мережі не треба було б змінювати склад операційної системи. | | У сучасних мережах для адресації вузлів застосовуються, як правило, одночасно всі три схеми адресації. Користувачі адресують комп'ютери символьними іменами, які автоматично замінюються у повідомленнях, що передаються по мережі, на числові номери. За допомогою цих числових номерів повідомлення передаються з однієї мережі до іншої, а після доставки повідомлення у мережу призначення замість числового номера використовується апаратна адреса комп'ютера. Сьогодні така схема характерна даже для невеликих автономних мереж, де, здавалося б, вона явно зайва - це робиться для того, щоб при під'єднанні цієї мережі до великої мережі не треба було б змінювати склад операційної системи. |
− |
| |
− | Використання масок в IP-адресації
| |
− | Традиційна схема ділення IP-адреси на номер мережі й номер вузла засновано на понятті класу, що визначається значеннями декількох перших біт адреси. Саме тому, що перший байт адреси 185.23.44.206 потрапляє в діапазон 128-191, ми можемо сказати, що ця адреса відноситься до класу В, а значить, номером мережі є перші два байти, доповнені двома нульовими байтами - 185.23.0.0, а номером вузла - 0.0.44.206.
| |
− | А що якщо використати яку-небудь іншу ознаку, за допомогою якого можна було б більш гнучко встановлювати границю між номером мережі й номером вузла? Як такі ознаки зараз одержали широке поширення маски. Маска — це число, що використовується в парі з IP-адресою; двійковий запис маски містить одиниці в тих розрядах, які повинні в IP-адресі інтерпретуватися як номер мережі. Оскільки номер мережі є цільною частиною адреси, одиниці в масці також повинні становити безперервну послідовність. Для стандартних класів мереж маски мають наступні значення:
| |
− | клас А - 11111111. 00000000. 00000000. 00000000 (255.0.0.0);
| |
− | клас В - 11111111. 11111111. 00000000. 00000000 (255.255.0.0);
| |
− | клас С- 11111111.11111111.11111111.00000000(255.255.255.0).
| |
− | Для запису масок використовуються й інші формати, наприклад, зручно інтерпретувати значення маски, записаної в шістнадцятковому коді: FF.FF.00.00 - маска для адрес класу В. Часто зустрічається й таке позначення 185.23.44.206/16 - цей запис говорить про те, що маска для цієї адреси містить 16 одиниць або що в указаній IP-адресі під номер мережі відведено 16 двійкових розрядів.
| |
− | Позначаючи кожну IP-адресу маскою, можна відмовитися від понять класів адрес і зробити гнучкішою систему адресації. Наприклад, якщо розглянуту вище адресу 185.23.44.206 асоціювати з маскою 255.255.255.0, то номером мережі буде 185.23.44.0, а не 185.23.0.0, як це визначено системою класів.
| |
− | У масках кількість одиниць у послідовності, що визначає границю номера мережі, не обов'язково повинне бути кратним 8, щоб повторювати розподіл адреси на байти. Нехай, наприклад, для IP-адреси 129.64.134.5 зазначено маску 255.255.128.0, тобто у двійковому виді: ІP-адреса 129.64.134.5 - 10000001. 01000000.10000110. 00000101 Маска 255.255.128.0- 11111111.11111111.10000000.00000000
| |
− | Якщо ігнорувати маску, то відповідно до системи класів адреса 129.64.134.5 відноситься до класу В, а виходить, номером мережі є перші 2 байти - 129.64.0.0, а номером вузла - 0.0.134.5.
| |
− | Якщо ж використовувати для визначення границі номера мережі маску, то 17 послідовних одиниць у масці, «накладені» на IP-адресу, визначають як номер мережі у двійковому представленні число:
| |
− | 10000001. 01000000. 10000000. 00000000 або в десятковій формі запису - номер мережі 129.64.128.0, а номер вузла 0.0.6.5.
| |
− | Механізм масок широко розповсюджений в IP-маршрутизації, причому маски можуть використовуватися для самих різних цілей. З їхньою допомогою адміністратор може структурувати свою мережу, не жадаючи від постачальника послуг додаткових номерів мереж. На основі цього ж механізму постачальники послуг можуть поєднувати адресні простори декількох мереж шляхом введення так званих «префіксів» з метою зменшення обсягу таблиць маршрутизації й підвищення за рахунок цього продуктивності маршрутизаторів.
| |
− |
| |
− | == <center>'''''<b>Додаткова інформація</b>'''''</center> ==
| |
− |
| |
− | '''[[DNS — не розкіш, об необхідність]]'''
| |
− |
| |
− | '''[[Структура DNS]]'''
| |
− |
| |
− | '''[[Зони, домени і піддомени]]'''
| |
− |
| |
− | '''[[Інтеграція DNS в Active Directory]]'''
| |
− |
| |
− | '''[[Що нам стоїть DNS побудувати]]'''
| |
− |
| |
− | '''[[Настройка DNS]]'''
| |
− |
| |
− | '''[[Підключаємося до Інтернету]]'''
| |
| | | |
| | | |
| [[category:Комп'ютерні мережі]] | | [[category:Комп'ютерні мережі]] |
Проблемою, яку треба враховувати при об'єднанні трьох і більше комп'ютерів, є проблема їх адресації.
До адреси вузла мережі і схемі її призначення можна пред'явити декілька вимог.
Так як всі перелічені вимоги важко поєднати у рамках однієї схеми адресації, то на практиці звичайно використовуються водночас декілька схем адресації, так що комп'ютер одночасно має декілька адрес-імен. Кожна адреса використовується у тій ситуації, коли відповідний вид адресації найзручніший. А щоб не виникало путанини і комп'ютер завжди однозначно визначався своєю адресою, використовуються спеціальні допоміжні протоколи, які по адресі одного типу визначають адреси інших типів.
Найбільшого розповсюдження отримали три схеми адресації вузлів.
! тут написати приклад адреси.
! описати приклади мережевих адрес (ІР, ІРХ).
! описати структуру символьних адрес в інтернеті.
У сучасних мережах для адресації вузлів застосовуються, як правило, одночасно всі три схеми адресації. Користувачі адресують комп'ютери символьними іменами, які автоматично замінюються у повідомленнях, що передаються по мережі, на числові номери. За допомогою цих числових номерів повідомлення передаються з однієї мережі до іншої, а після доставки повідомлення у мережу призначення замість числового номера використовується апаратна адреса комп'ютера. Сьогодні така схема характерна даже для невеликих автономних мереж, де, здавалося б, вона явно зайва - це робиться для того, щоб при під'єднанні цієї мережі до великої мережі не треба було б змінювати склад операційної системи.