Відмінності між версіями «Портфоліо до проекту Штучний інтелект Іващенко.А.Д 2018»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
(Блог до проекту)
 
(не показані 4 проміжні версії цього учасника)
Рядок 4: Рядок 4:
 
=Тема статті=
 
=Тема статті=
  
== Штучний Інтелект ==
+
=== Штучний Інтелект ===
  
 
==Опис проблеми==
 
==Опис проблеми==
  
 
Як самостійний науковий напрямок штучний інтелект існує з 40-х років ХХ століття. Побутує думка, що саме дослідження в цьому руслі виявлятимуть характер того інформаційного суспільства, яке замінює індустріальну цивілізацію. Робототехніка як прикладна наука в межах штучного інтелекту займає провідні позиції в розвитку країн, значно спрощуючи роботу в тих галузях життєдіяльності людини, де вагомий вплив здійснюють природні умови, екологія та загальний цивілізаційний стан.
 
Як самостійний науковий напрямок штучний інтелект існує з 40-х років ХХ століття. Побутує думка, що саме дослідження в цьому руслі виявлятимуть характер того інформаційного суспільства, яке замінює індустріальну цивілізацію. Робототехніка як прикладна наука в межах штучного інтелекту займає провідні позиції в розвитку країн, значно спрощуючи роботу в тих галузях життєдіяльності людини, де вагомий вплив здійснюють природні умови, екологія та загальний цивілізаційний стан.
 
+
[[Файл:ai.jpg|міні]]
 
За останні роки становлення штучного інтелекту та науки що займається розробкою автоматизованих технічних систем як особливих наукових дисциплін сформувались їх концептуальні моделі та особисті методи і прийоми, укорінились деякі фундаментальні парадигми. Таким чином робототехніка стала повноцінною наукою, здобувши собі місце поряд з фізикою, біологією та іншими науками.
 
За останні роки становлення штучного інтелекту та науки що займається розробкою автоматизованих технічних систем як особливих наукових дисциплін сформувались їх концептуальні моделі та особисті методи і прийоми, укорінились деякі фундаментальні парадигми. Таким чином робототехніка стала повноцінною наукою, здобувши собі місце поряд з фізикою, біологією та іншими науками.
  
 
Практичне застосування інтелектуальних систем розпочалось з розробки програми для вирішення математичних завдань, доказу теорем, шахових ігор. Наразі багато первинних ідей штучного інтелекту реалізовано в спеціальних технологіях, які ввійшли в наше повсякденне життя і сприймаються як належне, пройшовши декілька стадій модернізації і ставши «схожими» на людей не лише «інтелектуально» але й за зовнішніми параметрами.
 
Практичне застосування інтелектуальних систем розпочалось з розробки програми для вирішення математичних завдань, доказу теорем, шахових ігор. Наразі багато первинних ідей штучного інтелекту реалізовано в спеціальних технологіях, які ввійшли в наше повсякденне життя і сприймаються як належне, пройшовши декілька стадій модернізації і ставши «схожими» на людей не лише «інтелектуально» але й за зовнішніми параметрами.
 +
Підходи до вивчення Існують різні методи створення систем штучного інтелекту.
 +
====У наш час можна виділити 4 досить різних методи:====
 +
 +
'''Логічний підхід.''' Основою для вивчення логічного підходу слугує алгебра логіки. Кожен програміст знайомий з нею з того часу, коли він вивчав оператор IF. Свого подальшого розвитку алгебра логіки отримала у вигляді числення предикатів — в якому вона розширена за рахунок введення предметних символів, відношень між ними. Крім цього, кожна така машина має блок генерації цілі, і система виводу намагається довести дану ціль як теорему. Якщо ціль досягнута, то послідовність використаних правил дозволить отримати ланцюжок дій, необхідних для реалізації поставленої цілі (таку систему ще називають експертною системою). Потужність такої системи визначається можливостями генератора цілей і машинного доведення теорем. Для досягнення кращої виразності логічний підхід використовує новий напрям, його назва — нечітка логіка. Головною відмінністю цього напряму є те, що істинність вислову може приймати окрім значень «так»/«ні» (1/0) ще й проміжні значення — «не знаю» (0,5), «пацієнт швидше живий, ніж мертвий» (0,75), «пацієнт швидше мертвий, ніж живий» (0,25). Такий підхід подібніший до мислення людини, оскільки вона рідко відповідає «так» або «ні».
 +
 +
'''Структурний підхід.''' Під структурним підходом ми розуміємо спроби побудови ШІ шляхом моделювання структури людського мозку. Однією з перших таких спроб був перцептрон Френка Розенблатта. Головною моделюючою структурною одиницею в перцептронах (як і в більшості інших варіантах моделювання мозку) є нейрон. Пізніше виникли й інші моделі, відоміші під назвою нейронні мережі (НМ) і їхні реалізації — нейрокомп'ютери. Ці моделі відрізняються за будовою окремих нейронів, за топологією зв'язків між ними і алгоритмами навчання. Серед найвідоміших на початку 2000-х років варіантів НМ можна назвати НМ зі зворотнім поширенням помилки, сітки Кохонена, сітки Гопфілда, стохастичні нейрони сітки. У ширшому розумінні цей підхід відомий як конектіонізм[en]. Відмінності між логічним та структурним підходом не стільки принципові, як це здається на перший погляд. Алгоритми спрощення і вербалізації нейронних мереж перетворюють моделі структурного підходу на явні логічні моделі.[1] З іншого боку, ще 1943 року Воррен Маккалох і Волтер Піттс[en] показали, що нейронна сітка може реалізувати будь-яку функцію алгебри логіки[2].
 +
 +
'''Еволюційний підхід.''' Під час побудови системи ШІ за даним методом основну увагу зосереджують на побудові початкової моделі і правилах, за якими вона може змінюватися (еволюціонувати). Причому модель може бути створено за найрізноманітнішими методами, це може бути і НМ, і набір логічних правил, і будь-яка інша модель. Після цього ми вмикаємо комп'ютер і він на основі перевірки моделей відбирає найкращі з них, і за цими моделями за найрізноманітнішими правилами генеруються нові моделі. Серед еволюційних алгоритмів класичним вважається генетичний алгоритм.
 +
 +
'''Імітаційний підхід.''' Цей підхід є класичним для кібернетики з одним із її базових понять чорний ящик. Об'єкт, поведінка якого імітується, якраз і являє собою «чорний ящик». Для нас не важливо, які моделі у нього всередині і як він діє, головне, щоби наша модель в аналогічних ситуаціях поводила себе без змін. Таким чином тут моделюється інша властивість людини — здатність копіювати те, що роблять інші, без поділу на елементарні операції і формального опису дій. Часто ця властивість економить багато часу об'єктові, особливо на початку його життя.
  
 
==Мультимедійна презентація==
 
==Мультимедійна презентація==
 
[https://docs.google.com/presentation/d/194DX_trLKbAhEa1dW8cCADPixELY8OiMh9S7RYPlMXU/edit?usp=sharing Презентація]
 
[https://docs.google.com/presentation/d/194DX_trLKbAhEa1dW8cCADPixELY8OiMh9S7RYPlMXU/edit?usp=sharing Презентація]
  
==Календар подій проекту:==
+
==Календар подій проекту==
 
[https://docs.google.com/document/d/1Y7jlJThIVopDn-LifFSHqL4wlSGcKfqTNpvGTBO1Dxg/edit?usp=sharing Календар роботи у проекті]
 
[https://docs.google.com/document/d/1Y7jlJThIVopDn-LifFSHqL4wlSGcKfqTNpvGTBO1Dxg/edit?usp=sharing Календар роботи у проекті]
  
Рядок 25: Рядок 35:
 
==Фотоальбом до проекту==
 
==Фотоальбом до проекту==
 
[https://photos.app.goo.gl/5rew8oUBDQ7LHz9M8 Фотознімки]
 
[https://photos.app.goo.gl/5rew8oUBDQ7LHz9M8 Фотознімки]
 
==Спілкування між учасниками проекту==
 
*Чат
 
*Форум
 
*Спільнота на базі соціальних мереж
 
*Skype
 
*Telegram
 
*Viber
 
*Wiki-сторінка
 
*Сайт
 
*.....
 
  
 
=Інформаційні ресурси=
 
=Інформаційні ресурси=

Поточна версія на 10:55, 3 грудня 2018


Тема статті

Штучний Інтелект

Опис проблеми

Як самостійний науковий напрямок штучний інтелект існує з 40-х років ХХ століття. Побутує думка, що саме дослідження в цьому руслі виявлятимуть характер того інформаційного суспільства, яке замінює індустріальну цивілізацію. Робототехніка як прикладна наука в межах штучного інтелекту займає провідні позиції в розвитку країн, значно спрощуючи роботу в тих галузях життєдіяльності людини, де вагомий вплив здійснюють природні умови, екологія та загальний цивілізаційний стан.

Ai.jpg

За останні роки становлення штучного інтелекту та науки що займається розробкою автоматизованих технічних систем як особливих наукових дисциплін сформувались їх концептуальні моделі та особисті методи і прийоми, укорінились деякі фундаментальні парадигми. Таким чином робототехніка стала повноцінною наукою, здобувши собі місце поряд з фізикою, біологією та іншими науками.

Практичне застосування інтелектуальних систем розпочалось з розробки програми для вирішення математичних завдань, доказу теорем, шахових ігор. Наразі багато первинних ідей штучного інтелекту реалізовано в спеціальних технологіях, які ввійшли в наше повсякденне життя і сприймаються як належне, пройшовши декілька стадій модернізації і ставши «схожими» на людей не лише «інтелектуально» але й за зовнішніми параметрами. Підходи до вивчення Існують різні методи створення систем штучного інтелекту.

У наш час можна виділити 4 досить різних методи:

Логічний підхід. Основою для вивчення логічного підходу слугує алгебра логіки. Кожен програміст знайомий з нею з того часу, коли він вивчав оператор IF. Свого подальшого розвитку алгебра логіки отримала у вигляді числення предикатів — в якому вона розширена за рахунок введення предметних символів, відношень між ними. Крім цього, кожна така машина має блок генерації цілі, і система виводу намагається довести дану ціль як теорему. Якщо ціль досягнута, то послідовність використаних правил дозволить отримати ланцюжок дій, необхідних для реалізації поставленої цілі (таку систему ще називають експертною системою). Потужність такої системи визначається можливостями генератора цілей і машинного доведення теорем. Для досягнення кращої виразності логічний підхід використовує новий напрям, його назва — нечітка логіка. Головною відмінністю цього напряму є те, що істинність вислову може приймати окрім значень «так»/«ні» (1/0) ще й проміжні значення — «не знаю» (0,5), «пацієнт швидше живий, ніж мертвий» (0,75), «пацієнт швидше мертвий, ніж живий» (0,25). Такий підхід подібніший до мислення людини, оскільки вона рідко відповідає «так» або «ні».

Структурний підхід. Під структурним підходом ми розуміємо спроби побудови ШІ шляхом моделювання структури людського мозку. Однією з перших таких спроб був перцептрон Френка Розенблатта. Головною моделюючою структурною одиницею в перцептронах (як і в більшості інших варіантах моделювання мозку) є нейрон. Пізніше виникли й інші моделі, відоміші під назвою нейронні мережі (НМ) і їхні реалізації — нейрокомп'ютери. Ці моделі відрізняються за будовою окремих нейронів, за топологією зв'язків між ними і алгоритмами навчання. Серед найвідоміших на початку 2000-х років варіантів НМ можна назвати НМ зі зворотнім поширенням помилки, сітки Кохонена, сітки Гопфілда, стохастичні нейрони сітки. У ширшому розумінні цей підхід відомий як конектіонізм[en]. Відмінності між логічним та структурним підходом не стільки принципові, як це здається на перший погляд. Алгоритми спрощення і вербалізації нейронних мереж перетворюють моделі структурного підходу на явні логічні моделі.[1] З іншого боку, ще 1943 року Воррен Маккалох і Волтер Піттс[en] показали, що нейронна сітка може реалізувати будь-яку функцію алгебри логіки[2].

Еволюційний підхід. Під час побудови системи ШІ за даним методом основну увагу зосереджують на побудові початкової моделі і правилах, за якими вона може змінюватися (еволюціонувати). Причому модель може бути створено за найрізноманітнішими методами, це може бути і НМ, і набір логічних правил, і будь-яка інша модель. Після цього ми вмикаємо комп'ютер і він на основі перевірки моделей відбирає найкращі з них, і за цими моделями за найрізноманітнішими правилами генеруються нові моделі. Серед еволюційних алгоритмів класичним вважається генетичний алгоритм.

Імітаційний підхід. Цей підхід є класичним для кібернетики з одним із її базових понять чорний ящик. Об'єкт, поведінка якого імітується, якраз і являє собою «чорний ящик». Для нас не важливо, які моделі у нього всередині і як він діє, головне, щоби наша модель в аналогічних ситуаціях поводила себе без змін. Таким чином тут моделюється інша властивість людини — здатність копіювати те, що роблять інші, без поділу на елементарні операції і формального опису дій. Часто ця властивість економить багато часу об'єктові, особливо на початку його життя.

Мультимедійна презентація

Презентація

Календар подій проекту

Календар роботи у проекті

Опитування до проекту

Опитування

Фотоальбом до проекту

Фотознімки

Інформаційні ресурси

Відеоматеріали

  1. Чи потрібні роботам права?
  2. The Rise of the Machines – Why Automation is Different this Time
  3. Людина або робот? Хто розумніший?

Електронні ресурси

  1. Wikipedia
  2. YouTobe
  3. Кореспондент


Центральноукраїнський державний педагогічний університет імені Володимира Винниченка