Відмінності між версіями «Лазер: газовий, напівпровідниковий»
2477747 (обговорення • внесок) (→Фото, відео-матеріали) |
2477747 (обговорення • внесок) (→Список використаних джерел) |
||
(не показані 24 проміжні версії цього учасника) | |||
Рядок 7: | Рядок 7: | ||
}} | }} | ||
− | + | Роботу виконала [[Користувач:2477747|Котляр Анна]] | |
[[Файл:Emblema-MIT.png|80px|справа]] | [[Файл:Emblema-MIT.png|80px|справа]] | ||
==Загальний опис (принцип дії)== | ==Загальний опис (принцип дії)== | ||
− | |||
− | |||
− | |||
− | + | Основним робочим компонентом будь-якого лазерного пристрою є так звана активна середовище. Вона не лише виступає джерелом спрямованого потоку, але і в деяких випадках може значно посилювати. Саме такою особливістю і мають газові суміші, що виступають активною речовиною в лазерних установках. При цьому існують різні моделі подібних пристроїв, що відрізняються конструкцією, і характеристиками робочої середовища. Так або інакше, газовий лазер має чимало переваг, які дозволили йому зайняти міцне місце в арсеналі багатьох промислових підприємств. | |
+ | |||
+ | Традиційно лазери асоціюються з твердотільними і рідинними середовищами, які сприяють формуванню світлового променя з необхідними робочими характеристиками. При цьому газ має переваги у вигляді однорідності і невеликий щільності. Ці якості дозволяють лазерного потоку не спотворюватися, не втрачати енергію і не розсіюватися. Також газовий лазер відрізняється збільшеною спрямованістю випромінювання, межа якої визначає лише дифракція світла. У порівнянні з твердими тілами взаємодія частинок газу відбувається виключно при зіткненнях в умовах теплового переміщення. В результаті енергетичний спектр наповнювача відповідає енергетичному рівню кожної частки окремо. | ||
+ | |||
+ | Класичне влаштування таких апаратів формується герметичній трубкою з газоподібної функціональної середовищем, а також оптичним резонатором. Розрядна трубка зазвичай виконується з корундової кераміки. Її розміщують між відбиває призмою і дзеркалом на бериллиевом циліндрі. Розряд проводиться у двох секціях з загальним катодом при постійному струмі. Оксиднотанталовие холодні катоди найчастіше поділяють на дві частини за допомогою діелектричної прокладки, яка забезпечує однорідність розподілу струмів. Також пристрій газового лазера передбачає наявність анодів – їх функцію виконує нержавіюча сталь, представлена у вигляді вакуумних сильфонів. Ці елементи забезпечують рухливе з'єднання трубок, призми і власників дзеркала. | ||
+ | |||
Для наповнення енергією активного тіла в газі застосовуються електричні розряди, які виробляються електродами в порожнині трубки приладу. В процесі зіткнення електронів з газовими частинками відбувається їх порушення. Таким чином створюється основа для випромінювання фотонів. Вимушене випускання світлових хвиль в трубці підвищується в процесі їх проходженні по газовій плазмі. Виставлені дзеркала на торцях циліндра створюють основу для переважного напрямку світлового потоку. Напівпрозоре дзеркало, яким забезпечується газовий лазер, відбирає з направленого променя частку фотонів, а інша їх частина відображається всередину трубки, підтримуючи функцію випромінювання. | Для наповнення енергією активного тіла в газі застосовуються електричні розряди, які виробляються електродами в порожнині трубки приладу. В процесі зіткнення електронів з газовими частинками відбувається їх порушення. Таким чином створюється основа для випромінювання фотонів. Вимушене випускання світлових хвиль в трубці підвищується в процесі їх проходженні по газовій плазмі. Виставлені дзеркала на торцях циліндра створюють основу для переважного напрямку світлового потоку. Напівпрозоре дзеркало, яким забезпечується газовий лазер, відбирає з направленого променя частку фотонів, а інша їх частина відображається всередину трубки, підтримуючи функцію випромінювання. | ||
+ | |||
+ | Посилання на опис Напівпровідникового лазеру: | ||
+ | [[Напівпровідниковий лазер]] | ||
==Історична довідка== | ==Історична довідка== | ||
− | <big>'''Лазери'''</big> – це джерела когерентного оптичного випромінювання, принцип дії яких грунтується на використанні явища індукованого випромінювання. Слово «лазер» є абревіатуру англійської фрази | + | <big>'''Лазери'''</big> – це джерела когерентного оптичного випромінювання, принцип дії яких грунтується на використанні явища індукованого випромінювання. Слово «лазер» є абревіатуру англійської фрази «Light Amplificationby Stimulated Emission of Radiation», перекладної посилення світла результаті вимушеного випромінювання. Гіпотеза про існування вимушеного (індукованого) випромінювання пролунала в 1917 р. А. Ейнштейном. У 1940 р. професор Московського енергетичного інституту У. А.Фабрикант сформулював умови, і під час яких можна знайти індуковане випромінювання, а 1951 р. він разом із М. М.Вудинським і Ф. А.Бутаєвой отримав авторське свідчення на засіб посилення електромагнітного випромінювання. Пристрій, котре генерує електромагнітні коливання з урахуванням використання явища індукованого випромінювання в діапазоні, було створене 1953—1954 рр. М. Р.Басовим й О. М.Прохоровим у СРСР і групою Ч.Таунса США. |
<br /> | <br /> | ||
+ | |||
+ | |||
У 1958 р. А. М. Прохоров у СРСР, а США Ч.Таунс й О.Шавлов показали зокрема можливість використання індукованого випромінювання до створення генераторів когерентного оптичного випромінювання — лазерів. У 1959 р. М. Р.Басову й О. М.Прохорову за розробку нового принципу генерування і через посилення електромагнітних коливань й створення з урахуванням цього принципу НВЧ генераторів і підсилювачів присуджували Ленінська премія, а 1964 р. що з Ч.Таунсом — Нобелівську премію із фізики за дослідження у сфері квантової електроніки. | У 1958 р. А. М. Прохоров у СРСР, а США Ч.Таунс й О.Шавлов показали зокрема можливість використання індукованого випромінювання до створення генераторів когерентного оптичного випромінювання — лазерів. У 1959 р. М. Р.Басову й О. М.Прохорову за розробку нового принципу генерування і через посилення електромагнітних коливань й створення з урахуванням цього принципу НВЧ генераторів і підсилювачів присуджували Ленінська премія, а 1964 р. що з Ч.Таунсом — Нобелівську премію із фізики за дослідження у сфері квантової електроніки. | ||
+ | <br /> | ||
− | |||
− | |||
− | |||
− | |||
− | + | 1960 р. американськими фізиками А. Джавану, У. Беннету, Еге. Эрриоту удалося одержати генерацію оптичного випромінювання в електричному розряді в суміші гелію і неону. Отак виникло перший газовий лазер, поява якого треба було фактично підготовлено експериментальними дослідженнями У. А. Фабриканта і Ф. А. Бутаєвой, розробленими у 1957 р. | |
− | + | Починаючи з 1961 р., лазери різних типів (твердотільні газові) займають міцне місце у оптичних лабораторіях. Освоюються нові активні середовища, розробляється і вдосконалюється технологію виготовлення лазерів. | |
− | + | ||
− | = | + | 1967 Ф.К. Кнойбюль та інші реалізували хвилепровідний газовий лазер на HCN-молекулах (λ = 337 мкм) |
− | + | ||
− | + | ||
− | + | 1968 • M. Росс реалізував перший Nd:YAG-лазер з накачкою лазерними діодами | |
− | |||
− | + | 1969 • В.Б. Тіфанні та інші побудували перший кіловатний CO2-лазер | |
− | + | 1970 • O. Петерсон на інші отримали неперервне випромінювання на родаміні 6G | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | 1971 • Г. Когельник і С. Шанк винайшли лазер на барвниках з розподіленим зворотнім зв'язком (Distributed Feedback) | ||
+ | 1973 • M. Накамура і А .Ярів створили перший DFB напівпровідниковий лазер | ||
+ | 1974 • Г. Маровський використав кільцевий резонатор для запобігання „spatial hole burning”-ефекту | ||
+ | 1977 • Дж. Мадейс та інші свторюють перший лазер на вільних електронах | ||
+ | 1979 • Е. Аффолтер і Ф. Кнойбюль побудували газовий лазер з розподіленим зворотнім зв'язком (DFB) | ||
+ | • Х. Сода та інші створили перші поверхнево-емітуючі лазерні діоди (Vertical Cavity Surface Emitting Lasers) | ||
+ | 1980 • Л. Молленауер, Р. Стоулен, Дж. Ґордон вперше спостерігали солітони в оптичних волокнах | ||
+ | • Ц. Бор отримав короткі імпульси за допомогою лазера на барвниках | ||
+ | |||
+ | 1981 • Ф. Кояма та інші побудували GaInAsP/InP-лазерні діоди з розподіленим рефлектором Бреґґа (Distributed Bragg Reflector) | ||
+ | 1983 • Л. Молленауер, Р. Стоулен побудував перший лазер на солітонах | ||
+ | 1985 • Д. Меттьюс та інші відкрили рентгенівський лазер з 15 нм випромінюванням | ||
+ | |||
+ | 1987 • Д. Пейн відкрив ербієвий підсилювач з робочою довжиною хвилі 1,55 мкм (Erbium Doped Fiber Amplifier ) | ||
+ | |||
+ | 1991 • М. Гаазе та інші отримали короткочасну генерацію з блакитно-зеленого лазерного діода на базі селеніду цинку | ||
+ | 1992 • Ґ.Ґріін, Ґ. Ляйзінґ та інші створили перший органічний полімерний світлодіод з блакитним випромінюванням | ||
+ | |||
+ | 1995 • М. Андерсон та інші; К. Дейвіс та інші вперше спостерігають конденсат Бозе-Ейнштейна в атомарних газах | ||
+ | 1996 • Накамура Сюдзі створив перші ефективні блакитні лазерні діоди на базі нітриду галію | ||
+ | |||
+ | 1999 • Вольфганг Кеттерле та інші; К. Моцума та інші відкрили перший атомний лазер — когерентне підсилення матеріальних хвиль при проходженні атомного резевруару | ||
+ | |||
+ | ==Технічні характеристики== | ||
+ | |||
+ | Лазер — джерело світла. У порівнянні з іншими джерелами світла лазер має низку унікальних властивостей, пов'язаних з когерентністю і високою спрямованістю його випромінювання. Випромінювання «нелазерних» джерел світла не має цих особливостей. | ||
+ | |||
+ | «Серце лазера» — його активний елемент. В одних лазерів це кристалічний або скляний стрижень циліндричної форми. В інших — запаяна скляна трубка, всередині якої перебуває спеціально підібрана газова суміш. В третіх — кювета зі спеціальною рідиною. Відповідно розрізняють лазери твердотільні, газові й рідинні. | ||
+ | |||
+ | При нагріванні будь-яке тіло починає випромінювати тепло. Однак випромінювання теплового джерела поширюється в усіх напрямках, тобто заповнює тілесний кут 4π стерадіан. Формування спрямованого пучка від такого джерела, здійснюване за допомогою системи діафрагм або оптичних систем, що складаються з лінз і дзеркал, завжди супроводжується втратою енергії. Жодна оптична система не дозволяє одержати на поверхні освітлюваного об'єкта потужність випромінювання більшу, ніж у самому джерелі світла. | ||
+ | |||
+ | Внутрішній діаметр розрядної трубки зазвичай становить 15 мм. Діаметр оксиднотанталового катода може досягати 48 мм при довжині елемента 51 мм. При цьому конструкція працює під дією постійного струму з напругою до 1000 В. В гелій-неонових лазерах потужність випромінювання невелика і, як правило, обчислюється у десятих частках Вт. | ||
+ | Моделі на вуглекислому газі припускають використання трубок діаметром від 2 до 10 див. Примітно, що газовий лазер, що працює в безперервному режимі, володіє дуже високою потужністю. З погляду експлуатаційної ефективності, цей фактор іноді йде в плюс, але для підтримання стабільної функції таких приладів потрібні довговічні й надійні дзеркала з підвищеними оптичними властивостями. Як правило, технологи використовують металеві і сапфірові елементи з обробкою золотом. | ||
+ | |||
+ | ==Сфера застосування == | ||
+ | |||
+ | Практично всі лазери такого типу відрізняються високим ступенем надійності, довговічністю і доступною ціною. Ці фактори зумовили їх широке поширення в різних галузях. Наприклад, гелій-неонові апарати знайшли застосування в нівелювальних і юстіровочних операціях, які виконуються в шахтних роботах, в кораблебудуванні, а також при будівництві різних споруд. Крім цього, характеристики гелій-неонових лазерів підходять для використання в організації оптичного зв'язку, у розробці голографічних матеріалів і квантових гіроскопів. Не став винятком з точки зору практичної користі і аргоновий газовий лазер, застосування якого показує ефективність в сфері обробки матеріалів. Зокрема, подібні пристрої служать в якості різьбяра твердих порід і металів. | ||
+ | |||
+ | Отримано обнадійливі | ||
+ | результати в спрямованому стимулюванні хімічних реакцій. За допомогою | ||
+ | лазерів можна вибірково збуджувати одне із власних коливань молекули. | ||
+ | Виявилося, що при цьому молекули здатні вступати в реакції, які не можна | ||
+ | або важко стимулювати звичайним нагріванням.За допомогою лазерної | ||
+ | техніки інтенсивно розробляються оптичні методи обробки передачі й | ||
+ | зберігання інформації, методи голографічного запису інформації, | ||
+ | кольорове проекційне телебачення. | ||
==Фото, відео-матеріали== | ==Фото, відео-матеріали== | ||
Рядок 60: | Рядок 97: | ||
[[Файл:Газовий лазер3.jpeg|міні|праворуч|Газовий лазер]] | [[Файл:Газовий лазер3.jpeg|міні|праворуч|Газовий лазер]] | ||
[[Файл:Газовий лазер2.jpeg|міні|центр|Газовий лазер]] | [[Файл:Газовий лазер2.jpeg|міні|центр|Газовий лазер]] | ||
− | + | ||
− | + | ||
− | + | ||
==Список використаних джерел== | ==Список використаних джерел== | ||
− | # | + | # Борейшо А.С. Лазеры - устройство и действие 1992 р. |
− | + | # Брюннер У., Юнзі До. Довідник по лазерної техніці. / Під ред. О.П. Напартовича. М.: Энергоатомиздат, 1991. | |
− | #Газовые | + | # Донина М.М. Виникнення квантової електроніки. М.: Наука, 1974. |
− | #http://www.studfiles.ru/preview/5259448/page:17/ | + | # Звелто О. Принципы лазеров 1990 р. |
− | # | + | # Соболева Н.Н., Газовые лазери Москва “Світ” 1968 р. |
− | # | + | # Хьюстис Д.Л. Газовые лазеры 1989 р. |
− | # | + | # http://www.studfiles.ru/preview/5259448/page:17/ |
+ | # https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%B7%D0%BE%D0%B2%D1%8B%D0%B9_%D0%BB%D0%B0%D0%B7%D0%B5%D1%80 | ||
+ | # http://fb.ru/article/251705/gazovyiy-lazer-opisanie-harakteristiki-printsip-deystviya | ||
+ | # http://www.teh-lib.ru/koe/gazovye-lazery.html | ||
[[Категорія:Музей історії техніки]] | [[Категорія:Музей історії техніки]] |
Поточна версія на 17:19, 22 травня 2017
Роботу виконала Котляр Анна
Зміст
Загальний опис (принцип дії)
Основним робочим компонентом будь-якого лазерного пристрою є так звана активна середовище. Вона не лише виступає джерелом спрямованого потоку, але і в деяких випадках може значно посилювати. Саме такою особливістю і мають газові суміші, що виступають активною речовиною в лазерних установках. При цьому існують різні моделі подібних пристроїв, що відрізняються конструкцією, і характеристиками робочої середовища. Так або інакше, газовий лазер має чимало переваг, які дозволили йому зайняти міцне місце в арсеналі багатьох промислових підприємств.
Традиційно лазери асоціюються з твердотільними і рідинними середовищами, які сприяють формуванню світлового променя з необхідними робочими характеристиками. При цьому газ має переваги у вигляді однорідності і невеликий щільності. Ці якості дозволяють лазерного потоку не спотворюватися, не втрачати енергію і не розсіюватися. Також газовий лазер відрізняється збільшеною спрямованістю випромінювання, межа якої визначає лише дифракція світла. У порівнянні з твердими тілами взаємодія частинок газу відбувається виключно при зіткненнях в умовах теплового переміщення. В результаті енергетичний спектр наповнювача відповідає енергетичному рівню кожної частки окремо.
Класичне влаштування таких апаратів формується герметичній трубкою з газоподібної функціональної середовищем, а також оптичним резонатором. Розрядна трубка зазвичай виконується з корундової кераміки. Її розміщують між відбиває призмою і дзеркалом на бериллиевом циліндрі. Розряд проводиться у двох секціях з загальним катодом при постійному струмі. Оксиднотанталовие холодні катоди найчастіше поділяють на дві частини за допомогою діелектричної прокладки, яка забезпечує однорідність розподілу струмів. Також пристрій газового лазера передбачає наявність анодів – їх функцію виконує нержавіюча сталь, представлена у вигляді вакуумних сильфонів. Ці елементи забезпечують рухливе з'єднання трубок, призми і власників дзеркала.
Для наповнення енергією активного тіла в газі застосовуються електричні розряди, які виробляються електродами в порожнині трубки приладу. В процесі зіткнення електронів з газовими частинками відбувається їх порушення. Таким чином створюється основа для випромінювання фотонів. Вимушене випускання світлових хвиль в трубці підвищується в процесі їх проходженні по газовій плазмі. Виставлені дзеркала на торцях циліндра створюють основу для переважного напрямку світлового потоку. Напівпрозоре дзеркало, яким забезпечується газовий лазер, відбирає з направленого променя частку фотонів, а інша їх частина відображається всередину трубки, підтримуючи функцію випромінювання.
Посилання на опис Напівпровідникового лазеру: Напівпровідниковий лазер
Історична довідка
Лазери – це джерела когерентного оптичного випромінювання, принцип дії яких грунтується на використанні явища індукованого випромінювання. Слово «лазер» є абревіатуру англійської фрази «Light Amplificationby Stimulated Emission of Radiation», перекладної посилення світла результаті вимушеного випромінювання. Гіпотеза про існування вимушеного (індукованого) випромінювання пролунала в 1917 р. А. Ейнштейном. У 1940 р. професор Московського енергетичного інституту У. А.Фабрикант сформулював умови, і під час яких можна знайти індуковане випромінювання, а 1951 р. він разом із М. М.Вудинським і Ф. А.Бутаєвой отримав авторське свідчення на засіб посилення електромагнітного випромінювання. Пристрій, котре генерує електромагнітні коливання з урахуванням використання явища індукованого випромінювання в діапазоні, було створене 1953—1954 рр. М. Р.Басовим й О. М.Прохоровим у СРСР і групою Ч.Таунса США.
У 1958 р. А. М. Прохоров у СРСР, а США Ч.Таунс й О.Шавлов показали зокрема можливість використання індукованого випромінювання до створення генераторів когерентного оптичного випромінювання — лазерів. У 1959 р. М. Р.Басову й О. М.Прохорову за розробку нового принципу генерування і через посилення електромагнітних коливань й створення з урахуванням цього принципу НВЧ генераторів і підсилювачів присуджували Ленінська премія, а 1964 р. що з Ч.Таунсом — Нобелівську премію із фізики за дослідження у сфері квантової електроніки.
1960 р. американськими фізиками А. Джавану, У. Беннету, Еге. Эрриоту удалося одержати генерацію оптичного випромінювання в електричному розряді в суміші гелію і неону. Отак виникло перший газовий лазер, поява якого треба було фактично підготовлено експериментальними дослідженнями У. А. Фабриканта і Ф. А. Бутаєвой, розробленими у 1957 р.
Починаючи з 1961 р., лазери різних типів (твердотільні газові) займають міцне місце у оптичних лабораторіях. Освоюються нові активні середовища, розробляється і вдосконалюється технологію виготовлення лазерів.
1967 Ф.К. Кнойбюль та інші реалізували хвилепровідний газовий лазер на HCN-молекулах (λ = 337 мкм)
1968 • M. Росс реалізував перший Nd:YAG-лазер з накачкою лазерними діодами
1969 • В.Б. Тіфанні та інші побудували перший кіловатний CO2-лазер
1970 • O. Петерсон на інші отримали неперервне випромінювання на родаміні 6G
1971 • Г. Когельник і С. Шанк винайшли лазер на барвниках з розподіленим зворотнім зв'язком (Distributed Feedback) 1973 • M. Накамура і А .Ярів створили перший DFB напівпровідниковий лазер 1974 • Г. Маровський використав кільцевий резонатор для запобігання „spatial hole burning”-ефекту
1977 • Дж. Мадейс та інші свторюють перший лазер на вільних електронах 1979 • Е. Аффолтер і Ф. Кнойбюль побудували газовий лазер з розподіленим зворотнім зв'язком (DFB) • Х. Сода та інші створили перші поверхнево-емітуючі лазерні діоди (Vertical Cavity Surface Emitting Lasers)
1980 • Л. Молленауер, Р. Стоулен, Дж. Ґордон вперше спостерігали солітони в оптичних волокнах • Ц. Бор отримав короткі імпульси за допомогою лазера на барвниках
1981 • Ф. Кояма та інші побудували GaInAsP/InP-лазерні діоди з розподіленим рефлектором Бреґґа (Distributed Bragg Reflector) 1983 • Л. Молленауер, Р. Стоулен побудував перший лазер на солітонах 1985 • Д. Меттьюс та інші відкрили рентгенівський лазер з 15 нм випромінюванням
1987 • Д. Пейн відкрив ербієвий підсилювач з робочою довжиною хвилі 1,55 мкм (Erbium Doped Fiber Amplifier )
1991 • М. Гаазе та інші отримали короткочасну генерацію з блакитно-зеленого лазерного діода на базі селеніду цинку 1992 • Ґ.Ґріін, Ґ. Ляйзінґ та інші створили перший органічний полімерний світлодіод з блакитним випромінюванням
1995 • М. Андерсон та інші; К. Дейвіс та інші вперше спостерігають конденсат Бозе-Ейнштейна в атомарних газах 1996 • Накамура Сюдзі створив перші ефективні блакитні лазерні діоди на базі нітриду галію
1999 • Вольфганг Кеттерле та інші; К. Моцума та інші відкрили перший атомний лазер — когерентне підсилення матеріальних хвиль при проходженні атомного резевруару
Технічні характеристики
Лазер — джерело світла. У порівнянні з іншими джерелами світла лазер має низку унікальних властивостей, пов'язаних з когерентністю і високою спрямованістю його випромінювання. Випромінювання «нелазерних» джерел світла не має цих особливостей.
«Серце лазера» — його активний елемент. В одних лазерів це кристалічний або скляний стрижень циліндричної форми. В інших — запаяна скляна трубка, всередині якої перебуває спеціально підібрана газова суміш. В третіх — кювета зі спеціальною рідиною. Відповідно розрізняють лазери твердотільні, газові й рідинні.
При нагріванні будь-яке тіло починає випромінювати тепло. Однак випромінювання теплового джерела поширюється в усіх напрямках, тобто заповнює тілесний кут 4π стерадіан. Формування спрямованого пучка від такого джерела, здійснюване за допомогою системи діафрагм або оптичних систем, що складаються з лінз і дзеркал, завжди супроводжується втратою енергії. Жодна оптична система не дозволяє одержати на поверхні освітлюваного об'єкта потужність випромінювання більшу, ніж у самому джерелі світла.
Внутрішній діаметр розрядної трубки зазвичай становить 15 мм. Діаметр оксиднотанталового катода може досягати 48 мм при довжині елемента 51 мм. При цьому конструкція працює під дією постійного струму з напругою до 1000 В. В гелій-неонових лазерах потужність випромінювання невелика і, як правило, обчислюється у десятих частках Вт. Моделі на вуглекислому газі припускають використання трубок діаметром від 2 до 10 див. Примітно, що газовий лазер, що працює в безперервному режимі, володіє дуже високою потужністю. З погляду експлуатаційної ефективності, цей фактор іноді йде в плюс, але для підтримання стабільної функції таких приладів потрібні довговічні й надійні дзеркала з підвищеними оптичними властивостями. Як правило, технологи використовують металеві і сапфірові елементи з обробкою золотом.
Сфера застосування
Практично всі лазери такого типу відрізняються високим ступенем надійності, довговічністю і доступною ціною. Ці фактори зумовили їх широке поширення в різних галузях. Наприклад, гелій-неонові апарати знайшли застосування в нівелювальних і юстіровочних операціях, які виконуються в шахтних роботах, в кораблебудуванні, а також при будівництві різних споруд. Крім цього, характеристики гелій-неонових лазерів підходять для використання в організації оптичного зв'язку, у розробці голографічних матеріалів і квантових гіроскопів. Не став винятком з точки зору практичної користі і аргоновий газовий лазер, застосування якого показує ефективність в сфері обробки матеріалів. Зокрема, подібні пристрої служать в якості різьбяра твердих порід і металів.
Отримано обнадійливі результати в спрямованому стимулюванні хімічних реакцій. За допомогою лазерів можна вибірково збуджувати одне із власних коливань молекули. Виявилося, що при цьому молекули здатні вступати в реакції, які не можна або важко стимулювати звичайним нагріванням.За допомогою лазерної техніки інтенсивно розробляються оптичні методи обробки передачі й зберігання інформації, методи голографічного запису інформації, кольорове проекційне телебачення.
Фото, відео-матеріали
Список використаних джерел
- Борейшо А.С. Лазеры - устройство и действие 1992 р.
- Брюннер У., Юнзі До. Довідник по лазерної техніці. / Під ред. О.П. Напартовича. М.: Энергоатомиздат, 1991.
- Донина М.М. Виникнення квантової електроніки. М.: Наука, 1974.
- Звелто О. Принципы лазеров 1990 р.
- Соболева Н.Н., Газовые лазери Москва “Світ” 1968 р.
- Хьюстис Д.Л. Газовые лазеры 1989 р.
- http://www.studfiles.ru/preview/5259448/page:17/
- https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%B7%D0%BE%D0%B2%D1%8B%D0%B9_%D0%BB%D0%B0%D0%B7%D0%B5%D1%80
- http://fb.ru/article/251705/gazovyiy-lazer-opisanie-harakteristiki-printsip-deystviya
- http://www.teh-lib.ru/koe/gazovye-lazery.html