Відмінності між версіями «Комп'ютерні мережі Кандиби Марини»
(не показано 19 проміжних версій цього учасника) | |||
Рядок 1: | Рядок 1: | ||
− | + | <font size=3>'''Історія створення стандарту FDDI''' </font> (стаття в розробці надто не критикуйте) | |
Технологія '''Fiber Distributed Data Interface''' - перша технологія локальних мереж, яка використовувала як середовище передачі даних оптоволоконний кабель. | Технологія '''Fiber Distributed Data Interface''' - перша технологія локальних мереж, яка використовувала як середовище передачі даних оптоволоконний кабель. | ||
+ | |||
Недорогі оптичні волокна, що забезпечують низькі втрати потужності світлового сигналу і широку смугу пропускання (до декількох Ггц) з'явилися тільки в 1970-і роки. На початку 1980-х років почалося промислова установка і експлуатація оптоволоконних каналів зв'язку для територіальних телекомунікаційних систем. | Недорогі оптичні волокна, що забезпечують низькі втрати потужності світлового сигналу і широку смугу пропускання (до декількох Ггц) з'явилися тільки в 1970-і роки. На початку 1980-х років почалося промислова установка і експлуатація оптоволоконних каналів зв'язку для територіальних телекомунікаційних систем. | ||
+ | |||
У 1980-і роки почалися також роботи із створення стандартних технологій і пристроїв для використання оптоволоконних каналів в локальних мережах. Роботи по узагальненню досвіду і розробці першого оптоволоконного стандарту для локальних мереж були зосереджені в '''''Американському Національному Інституті по Стандартизації - ANSI''''', в рамках створеного для цієї мети комітету X3T9.5. Початкові версії різних складників стандарту FDDI були розроблені комітетом '''''Х3Т9'''''.5 в 1986 - 1988 рр., і тоді ж з'явилося перше обладнання - мережеві адаптери, концентратори, мости і маршрутизатори, що підтримують цей стандарт. | У 1980-і роки почалися також роботи із створення стандартних технологій і пристроїв для використання оптоволоконних каналів в локальних мережах. Роботи по узагальненню досвіду і розробці першого оптоволоконного стандарту для локальних мереж були зосереджені в '''''Американському Національному Інституті по Стандартизації - ANSI''''', в рамках створеного для цієї мети комітету X3T9.5. Початкові версії різних складників стандарту FDDI були розроблені комітетом '''''Х3Т9'''''.5 в 1986 - 1988 рр., і тоді ж з'явилося перше обладнання - мережеві адаптери, концентратори, мости і маршрутизатори, що підтримують цей стандарт. | ||
− | [[Основи технології]] | + | <font size=3>[[Основи технології]]</font> |
FDDI був розроблений як протокол для надійних, високошвидкісних мереж і магістралей з високим трафіком. Він здатний передавати дані з швидкістю до 100 мегабіт в секунду і підтримує до 500 станцій в сегменті. FDDI був розроблений для роботи на оптоволоконних каналах, які передають світлові імпульси в двох напрямах між станціями, а також може бути використаний на мідних кабельних системах (на витій парі 5 категорії - CDDI) при використанні електричних сигналів. FDDI підтримує високу надійність, оскільки мережі FDDI складаються з двох протилежно направлених логічних кілець, причому при відключенні від живлення однієї із станцій кільця не обриваються, а спрацьовує механізм '''''bypass''''' - пряма передача по внутрішньому оптичному каналу з порту в порт. | FDDI був розроблений як протокол для надійних, високошвидкісних мереж і магістралей з високим трафіком. Він здатний передавати дані з швидкістю до 100 мегабіт в секунду і підтримує до 500 станцій в сегменті. FDDI був розроблений для роботи на оптоволоконних каналах, які передають світлові імпульси в двох напрямах між станціями, а також може бути використаний на мідних кабельних системах (на витій парі 5 категорії - CDDI) при використанні електричних сигналів. FDDI підтримує високу надійність, оскільки мережі FDDI складаються з двох протилежно направлених логічних кілець, причому при відключенні від живлення однієї із станцій кільця не обриваються, а спрацьовує механізм '''''bypass''''' - пряма передача по внутрішньому оптичному каналу з порту в порт. | ||
− | + | <font size=3>[[Протокол FDDI]]</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[Протокол FDDI]] | + | |
На малюнку 3 приведена структура протоколів технології FDDI порівняно з семирівневою моделлю OSI. FDDI визначає протокол фізичного рівня і протокол підрівня доступу до середовища (MAC) канального рівня. Як і багато інших технологій локальних мереж, технологія FDDI використовує протокол '''''802.2''''' підрівня управління каналом даних (LLC), визначений в стандартах IEEE 802.2 і ISO 8802.2. FDDI використовує перший тип процедур LLC, при якому вузли працюють в '''''дейтаграмному режимі''''' - без встановлення з'єднань і без відновлення втрачених або пошкоджених кадрів. | На малюнку 3 приведена структура протоколів технології FDDI порівняно з семирівневою моделлю OSI. FDDI визначає протокол фізичного рівня і протокол підрівня доступу до середовища (MAC) канального рівня. Як і багато інших технологій локальних мереж, технологія FDDI використовує протокол '''''802.2''''' підрівня управління каналом даних (LLC), визначений в стандартах IEEE 802.2 і ISO 8802.2. FDDI використовує перший тип процедур LLC, при якому вузли працюють в '''''дейтаграмному режимі''''' - без встановлення з'єднань і без відновлення втрачених або пошкоджених кадрів. | ||
[[Файл:FDDI3.JPG]] | [[Файл:FDDI3.JPG]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | [[Станції FDDI]] | + | <font size=3>[[Станції FDDI]]</font> |
FDDI встановлює застосування подвійних кільцевих мереж. Трафік по цих кільцях рухається в протилежних напрямах. У фізичному виразі кільце складається з двох або більш двоточкових з'єднань між суміжними станціями. Одне з двох кілець FDDI називається первинним кільцем, друге-вторинним кільцем. Первинне кільце використовується для передачі даних, тоді як вторинне кільце зазвичай є дублюючим. | FDDI встановлює застосування подвійних кільцевих мереж. Трафік по цих кільцях рухається в протилежних напрямах. У фізичному виразі кільце складається з двох або більш двоточкових з'єднань між суміжними станціями. Одне з двох кілець FDDI називається первинним кільцем, друге-вторинним кільцем. Первинне кільце використовується для передачі даних, тоді як вторинне кільце зазвичай є дублюючим. | ||
Рядок 89: | Рядок 24: | ||
[[Файл:FDDI33.JPG]] | [[Файл:FDDI33.JPG]] | ||
+ | |||
Мал. 4 Вузли FDDI : DAS, SAS і концентратор | Мал. 4 Вузли FDDI : DAS, SAS і концентратор | ||
FDDI використовує логічну топологію - подвійне кільце. Станції подвійного підключення (dual-attached або DAS) під'єднуються до обох кілець. DAS мають два порти: А - для прийому сигналу з головного кільця і B - для передачі сигналу в головне кільце. | FDDI використовує логічну топологію - подвійне кільце. Станції подвійного підключення (dual-attached або DAS) під'єднуються до обох кілець. DAS мають два порти: А - для прийому сигналу з головного кільця і B - для передачі сигналу в головне кільце. | ||
− | + | <font size=3>[[Концентратори FDDI]]</font> | |
− | + | Концентратори дозволяють SAS і DAS вузлам підключатися до подвійного кільця FDDI. Концентратори мають М (master) порти для підключення SAS і DAS портів, а також можуть самі мати SAS і DAS порти див. Рис. 7. Дане каскадування називають '''кільцем дерев'''. | |
− | + | ||
− | + | [[Файл:FDDI6.JPG]] | |
− | + | ||
− | [[Файл: | + | |
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
мал. 7 "Концентратор" | мал. 7 "Концентратор" | ||
− | |||
− | + | <font size=3>[[Кількість MAC-вузлів станції]]</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[Кількість MAC-вузлів станції]] | + | |
Для того, щоб мати можливість передавати власні дані в кільце (а не просто ретранслювати дані сусідніх станцій), станція повинна мати в своєму складі хоч би один MAC-вузол, який має свою унікальну MAC-адресу. Станції можуть не мати жодного вузла MAC, і брати участь тільки в ретрансляції чужих кадрів. Але зазвичай всі станції мережі FDDI, навіть концентратори, мають хоча б один MAC. Концентратори використовують MAC-вузол для захоплення і генерації службових кадрів, наприклад, кадрів ініціалізації кільця, кадрів пошуку несправності в кільці і тому подібне. | Для того, щоб мати можливість передавати власні дані в кільце (а не просто ретранслювати дані сусідніх станцій), станція повинна мати в своєму складі хоч би один MAC-вузол, який має свою унікальну MAC-адресу. Станції можуть не мати жодного вузла MAC, і брати участь тільки в ретрансляції чужих кадрів. Але зазвичай всі станції мережі FDDI, навіть концентратори, мають хоча б один MAC. Концентратори використовують MAC-вузол для захоплення і генерації службових кадрів, наприклад, кадрів ініціалізації кільця, кадрів пошуку несправності в кільці і тому подібне. | ||
− | + | <font size=3>[[Типи портів станцій і концентраторів FDDI і правила їх з'єднання]]</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[Типи портів станцій і концентраторів FDDI і правила їх з'єднання]] | + | |
У стандарті FDDI описано чотири типи портів, які відрізняються своїм призначенням і можливостями з'єднання один з одним для утворення коректних конфігурацій мереж. | У стандарті FDDI описано чотири типи портів, які відрізняються своїм призначенням і можливостями з'єднання один з одним для утворення коректних конфігурацій мереж. | ||
− | + | <font size=3>[[Відмовостійкість мереж FDDI]]</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[Відмовостійкість мереж FDDI]] | + | |
Мережа FDDI будується на основі двох оптоволоконних кілець, які утворюють основний і резервний шляхи передачі даних між вузлами мережі. Використання двох кілець - це основний спосіб підвищення відмовостійкості в мережі FDDI , і вузли, які хочуть їм скористатися, повинні бути підключені до обох кілець. У нормальному режимі роботи мережі дані проходять через всі вузли і всі ділянки кабелю первинного (Primary) кільця, тому цей режим названий режимом Thru - "навскрізним" або "транзитним". Вторинне кільце (Secondary) в цьому режимі не використовується. | Мережа FDDI будується на основі двох оптоволоконних кілець, які утворюють основний і резервний шляхи передачі даних між вузлами мережі. Використання двох кілець - це основний спосіб підвищення відмовостійкості в мережі FDDI , і вузли, які хочуть їм скористатися, повинні бути підключені до обох кілець. У нормальному режимі роботи мережі дані проходять через всі вузли і всі ділянки кабелю первинного (Primary) кільця, тому цей режим названий режимом Thru - "навскрізним" або "транзитним". Вторинне кільце (Secondary) в цьому режимі не використовується. | ||
− | + | <font size=3>[[Маркерний метод доступу]]</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[Маркерний метод доступу]] | + | |
Кільця в мережах FDDI розглядаються як загальне середовище передачі даних, що розділяється, тому для неї визначений спеціальний метод доступу. Цей метод дуже близький до методу доступу мереж Token Ring і також називається методом маркерного (або токенного) кільця - token ring (рис. 14, а). | Кільця в мережах FDDI розглядаються як загальне середовище передачі даних, що розділяється, тому для неї визначений спеціальний метод доступу. Цей метод дуже близький до методу доступу мереж Token Ring і також називається методом маркерного (або токенного) кільця - token ring (рис. 14, а). | ||
Рядок 165: | Рядок 55: | ||
Станція може почати передачу своїх власних кадрів даних тільки в тому випадку, якщо вона отримала від попередньої станції спеціальний кадр - токен доступу (рис. 14, б). Після цього вона може передавати свої кадри, якщо вони у неї є, протягом часу, який називається часом утримання токена - Token Holding Time (THT). Після закінчення часу THT станція зобов'язана завершити передачу свого чергового кадру і передати токен доступу наступної станції. Якщо ж у момент прийняття токена у станції немає кадрів для передачі по мережі, то вона негайно транслює токен наступній станції. У мережі FDDI у кожної станції є попередній сусід (upstream neighbor) і подальший сусід (downstream neighbor), визначувані її фізичними зв'язками і напрямом передачі інформації . | Станція може почати передачу своїх власних кадрів даних тільки в тому випадку, якщо вона отримала від попередньої станції спеціальний кадр - токен доступу (рис. 14, б). Після цього вона може передавати свої кадри, якщо вони у неї є, протягом часу, який називається часом утримання токена - Token Holding Time (THT). Після закінчення часу THT станція зобов'язана завершити передачу свого чергового кадру і передати токен доступу наступної станції. Якщо ж у момент прийняття токена у станції немає кадрів для передачі по мережі, то вона негайно транслює токен наступній станції. У мережі FDDI у кожної станції є попередній сусід (upstream neighbor) і подальший сусід (downstream neighbor), визначувані її фізичними зв'язками і напрямом передачі інформації . | ||
− | + | <font size=3>'''Формат кадру'''</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
[[Файл:FDDI15.JPG]] | [[Файл:FDDI15.JPG]] | ||
Рядок 196: | Рядок 78: | ||
− | + | <font size=3>'''Формат маркера'''</font> | |
[[Файл:FDDI16.JPG]] | [[Файл:FDDI16.JPG]] | ||
Рядок 211: | Рядок 93: | ||
Станція отримує право передати інформацію в мережу, коли виявляє проходящий маркер. Маркер - сигнал управління, що складається з унікальної послідовності символів, яка циркулює по кільцю після кожної інформаційної передачі. Будь-яка станція, після виявлення маркера, може фіксувати маркер, видаляючи його з кільця. Станція може потім передати один або більшу кількість фреймів інформації. При завершенні інформаційної передачі станція видає новий маркер, який забезпечує іншим станціям можливість дістати доступ до кільця. | Станція отримує право передати інформацію в мережу, коли виявляє проходящий маркер. Маркер - сигнал управління, що складається з унікальної послідовності символів, яка циркулює по кільцю після кожної інформаційної передачі. Будь-яка станція, після виявлення маркера, може фіксувати маркер, видаляючи його з кільця. Станція може потім передати один або більшу кількість фреймів інформації. При завершенні інформаційної передачі станція видає новий маркер, який забезпечує іншим станціям можливість дістати доступ до кільця. | ||
− | + | <font size=3>'''Передача біт'''</font> | |
Для передачі інформації FDDI використовує світлові імпульси від станції до станції. Мінімальний об'єкт передачі інформації - біт. Щоб мати можливість передавати дані, необхідно уміти передавати по оптоволоконному (або мідному) кабелю біт і уміти його розпізнавати. | Для передачі інформації FDDI використовує світлові імпульси від станції до станції. Мінімальний об'єкт передачі інформації - біт. Щоб мати можливість передавати дані, необхідно уміти передавати по оптоволоконному (або мідному) кабелю біт і уміти його розпізнавати. | ||
Рядок 218: | Рядок 100: | ||
[[Файл:FDDI17.JPG]] | [[Файл:FDDI17.JPG]] | ||
+ | |||
Рис.15 Передача біт | Рис.15 Передача біт | ||
− | + | <font size=3>'''Властивості мереж FDDI'''</font> | |
− | [[Синхронна і асинхронна передача]] | + | <font size=3>[[Синхронна і асинхронна передача]]</font> |
Підключені до мережі FDDI станції можуть передавати свої дані в кільце в двох режимах - в синхронному і в асинхронному. | Підключені до мережі FDDI станції можуть передавати свої дані в кільце в двох режимах - в синхронному і в асинхронному. | ||
− | |||
− | + | '''Синхронна передача.''' В процесі ініціалізації мережі визначається очікуваний час обходу кільця маркером - TTRT (Target Token Rotation Time). Кожній станції, що захопила маркер, відводиться гарантований час для передачі її даних в кільце. По закінчення цього часу станція повинна закінчити передачу і відправити маркер в кільце. | |
− | + | '''Асинхронна передача.''' Кожна станція у момент посилки нового маркера включає таймер, що вимірює часовий інтервал до моменту повернення до неї маркера, - TRT (Token Rotation Timer). Якщо маркер повернеться до станції раніше очікуваного часу обходу TTRT, то станція може продовжити час передачі своїх даних в кільце і після закінчення синхронної передачі. Додатковий часовий інтервал для передачі станцією буде рівний різниці між очікуваним і реальним часом обходу кільця маркером. | |
− | + | <font size=3>[[Кабельна система]]</font> | |
− | + | ||
− | [[Кабельна система]] | + | |
Підстандарт FDDI PMD (Physical medium-dependent layer) як базова кабельна система визначає багатомодовий волоконно-оптичний кабель з діаметром світлопроводів 62.5/125 мкм. Допускається застосування кабелів з іншим діаметром волокон, наприклад: 50/125 мкм. Довжина хвилі - 1300 нм. | Підстандарт FDDI PMD (Physical medium-dependent layer) як базова кабельна система визначає багатомодовий волоконно-оптичний кабель з діаметром світлопроводів 62.5/125 мкм. Допускається застосування кабелів з іншим діаметром волокон, наприклад: 50/125 мкм. Довжина хвилі - 1300 нм. | ||
Рядок 239: | Рядок 119: | ||
Середня потужність оптичного сигналу на вході станції повинна бути не менше -31 дБм. При такій вхідній потужності ймовірність помилки на біт при ретрансляції даних станцією не повинна перевищувати 2.5*10-10 . При збільшенні потужності вхідного сигналу на 2 дБм, ця ймовірність повинна знизитися до 10-12. | Середня потужність оптичного сигналу на вході станції повинна бути не менше -31 дБм. При такій вхідній потужності ймовірність помилки на біт при ретрансляції даних станцією не повинна перевищувати 2.5*10-10 . При збільшенні потужності вхідного сигналу на 2 дБм, ця ймовірність повинна знизитися до 10-12. | ||
− | + | <font size=3>'''Кодування символів'''</font> | |
− | + | FDDI кодує інформацію, використовуючи символи. Символ - 5 бітова послідовність. Два символи складають один байт. Це 5 бітове кодування забезпечує 16 символів даних (0-F), 8 контрольних символів (Q, H, I, J, K, T, R, S) і 8 символів порушення (V). | |
− | + | <font size=3>'''Підключення обладнання до мережі FDDI'''</font> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Є два основні способи підключення комп'ютерів до мережі FDDI: безпосередньо, а також і через мости або маршрутизатори до мереж інших протоколів. | Є два основні способи підключення комп'ютерів до мережі FDDI: безпосередньо, а також і через мости або маршрутизатори до мереж інших протоколів. | ||
− | + | <font size=3>'''Безпосереднє підключення'''</font> | |
Цей спосіб підключення використовується, як правило, для підключення до мережі FDDI файлів, архіваційних і інших серверів, середніх і великих ЕОМ, тобто ключових мережевих компонентів, що є головними обчислювальними центрами, що надають сервіс для багатьох користувачів і вимагають високих швидкостей введення-виведення по мережі. | Цей спосіб підключення використовується, як правило, для підключення до мережі FDDI файлів, архіваційних і інших серверів, середніх і великих ЕОМ, тобто ключових мережевих компонентів, що є головними обчислювальними центрами, що надають сервіс для багатьох користувачів і вимагають високих швидкостей введення-виведення по мережі. | ||
Рядок 267: | Рядок 136: | ||
Всі провідні виробники UNIX машин (DEC, Hewlett-Packard, IBM, та інші) передбачають інтерфейси для безпосереднього підключення до мереж FDDI. | Всі провідні виробники UNIX машин (DEC, Hewlett-Packard, IBM, та інші) передбачають інтерфейси для безпосереднього підключення до мереж FDDI. | ||
− | [[Підключення через мости і маршрутизатори]] | + | <font size=3>[[Підключення через мости і маршрутизатори]]</font> |
Мости (bridges) і маршрутизатори (routers) дозволяють підключити до FDDI мережі інші протоколи, наприклад, Token Ring і Ethernet. Це робить можливим економічне підключення до FDDI великого числа робочих станцій і іншого мережевого обладнання як в нових, так і в уже існуючих ЛВС. | Мости (bridges) і маршрутизатори (routers) дозволяють підключити до FDDI мережі інші протоколи, наприклад, Token Ring і Ethernet. Це робить можливим економічне підключення до FDDI великого числа робочих станцій і іншого мережевого обладнання як в нових, так і в уже існуючих ЛВС. | ||
− | + | <font size=3>[[FDDI специфікації]]</font> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[FDDI специфікації]] | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <font size=3>[[Переваги і недоліки]]</font> | |
− | + | <font size=3>[[Джерела :]]</font> |
Поточна версія на 14:47, 21 грудня 2009
Історія створення стандарту FDDI (стаття в розробці надто не критикуйте)
Технологія Fiber Distributed Data Interface - перша технологія локальних мереж, яка використовувала як середовище передачі даних оптоволоконний кабель.
Недорогі оптичні волокна, що забезпечують низькі втрати потужності світлового сигналу і широку смугу пропускання (до декількох Ггц) з'явилися тільки в 1970-і роки. На початку 1980-х років почалося промислова установка і експлуатація оптоволоконних каналів зв'язку для територіальних телекомунікаційних систем.
У 1980-і роки почалися також роботи із створення стандартних технологій і пристроїв для використання оптоволоконних каналів в локальних мережах. Роботи по узагальненню досвіду і розробці першого оптоволоконного стандарту для локальних мереж були зосереджені в Американському Національному Інституті по Стандартизації - ANSI, в рамках створеного для цієї мети комітету X3T9.5. Початкові версії різних складників стандарту FDDI були розроблені комітетом Х3Т9.5 в 1986 - 1988 рр., і тоді ж з'явилося перше обладнання - мережеві адаптери, концентратори, мости і маршрутизатори, що підтримують цей стандарт.
FDDI був розроблений як протокол для надійних, високошвидкісних мереж і магістралей з високим трафіком. Він здатний передавати дані з швидкістю до 100 мегабіт в секунду і підтримує до 500 станцій в сегменті. FDDI був розроблений для роботи на оптоволоконних каналах, які передають світлові імпульси в двох напрямах між станціями, а також може бути використаний на мідних кабельних системах (на витій парі 5 категорії - CDDI) при використанні електричних сигналів. FDDI підтримує високу надійність, оскільки мережі FDDI складаються з двох протилежно направлених логічних кілець, причому при відключенні від живлення однієї із станцій кільця не обриваються, а спрацьовує механізм bypass - пряма передача по внутрішньому оптичному каналу з порту в порт.
На малюнку 3 приведена структура протоколів технології FDDI порівняно з семирівневою моделлю OSI. FDDI визначає протокол фізичного рівня і протокол підрівня доступу до середовища (MAC) канального рівня. Як і багато інших технологій локальних мереж, технологія FDDI використовує протокол 802.2 підрівня управління каналом даних (LLC), визначений в стандартах IEEE 802.2 і ISO 8802.2. FDDI використовує перший тип процедур LLC, при якому вузли працюють в дейтаграмному режимі - без встановлення з'єднань і без відновлення втрачених або пошкоджених кадрів.
FDDI встановлює застосування подвійних кільцевих мереж. Трафік по цих кільцях рухається в протилежних напрямах. У фізичному виразі кільце складається з двох або більш двоточкових з'єднань між суміжними станціями. Одне з двох кілець FDDI називається первинним кільцем, друге-вторинним кільцем. Первинне кільце використовується для передачі даних, тоді як вторинне кільце зазвичай є дублюючим.
"Станції Класу В" або "станції, що підключаються до одного кільця" (SAS) приєднані до однієї кільцевої мережі; "станції класу А" або "станції, що підключаються до двох кілець" (DAS) приєднані до обох кільцевих мереж. SAS підключені до первинного кільця через "концентратор", який забезпечує зв'язки для безлічі SAS. Koнцентратор відповідає за те, щоб відмова або відключення живлення в будь-якій з SAS не переривали кільце. Це особливо необхідно, коли до кільця підключений РС або аналогічні пристрої, у яких живлення часто включається і вимикається.
Мал. 4 Вузли FDDI : DAS, SAS і концентратор
FDDI використовує логічну топологію - подвійне кільце. Станції подвійного підключення (dual-attached або DAS) під'єднуються до обох кілець. DAS мають два порти: А - для прийому сигналу з головного кільця і B - для передачі сигналу в головне кільце.
Концентратори дозволяють SAS і DAS вузлам підключатися до подвійного кільця FDDI. Концентратори мають М (master) порти для підключення SAS і DAS портів, а також можуть самі мати SAS і DAS порти див. Рис. 7. Дане каскадування називають кільцем дерев.
мал. 7 "Концентратор"
Для того, щоб мати можливість передавати власні дані в кільце (а не просто ретранслювати дані сусідніх станцій), станція повинна мати в своєму складі хоч би один MAC-вузол, який має свою унікальну MAC-адресу. Станції можуть не мати жодного вузла MAC, і брати участь тільки в ретрансляції чужих кадрів. Але зазвичай всі станції мережі FDDI, навіть концентратори, мають хоча б один MAC. Концентратори використовують MAC-вузол для захоплення і генерації службових кадрів, наприклад, кадрів ініціалізації кільця, кадрів пошуку несправності в кільці і тому подібне.
Типи портів станцій і концентраторів FDDI і правила їх з'єднання
У стандарті FDDI описано чотири типи портів, які відрізняються своїм призначенням і можливостями з'єднання один з одним для утворення коректних конфігурацій мереж.
Мережа FDDI будується на основі двох оптоволоконних кілець, які утворюють основний і резервний шляхи передачі даних між вузлами мережі. Використання двох кілець - це основний спосіб підвищення відмовостійкості в мережі FDDI , і вузли, які хочуть їм скористатися, повинні бути підключені до обох кілець. У нормальному режимі роботи мережі дані проходять через всі вузли і всі ділянки кабелю первинного (Primary) кільця, тому цей режим названий режимом Thru - "навскрізним" або "транзитним". Вторинне кільце (Secondary) в цьому режимі не використовується.
Кільця в мережах FDDI розглядаються як загальне середовище передачі даних, що розділяється, тому для неї визначений спеціальний метод доступу. Цей метод дуже близький до методу доступу мереж Token Ring і також називається методом маркерного (або токенного) кільця - token ring (рис. 14, а).
Станція може почати передачу своїх власних кадрів даних тільки в тому випадку, якщо вона отримала від попередньої станції спеціальний кадр - токен доступу (рис. 14, б). Після цього вона може передавати свої кадри, якщо вони у неї є, протягом часу, який називається часом утримання токена - Token Holding Time (THT). Після закінчення часу THT станція зобов'язана завершити передачу свого чергового кадру і передати токен доступу наступної станції. Якщо ж у момент прийняття токена у станції немає кадрів для передачі по мережі, то вона негайно транслює токен наступній станції. У мережі FDDI у кожної станції є попередній сусід (upstream neighbor) і подальший сусід (downstream neighbor), визначувані її фізичними зв'язками і напрямом передачі інформації .
Формат кадру
• PA --- Преамбула (Preamble): 16 або більше порожніх символів.
• SD --- Стартовий роздільник (Starting Delimiter): Символи 'J' і 'K'.
• FC --- Frame Control: 2 символи, що відповідають за тип інформації в полі INFO
• DA --- Адреса призначення (Destination Address): 12 символів, що показують кому адресований кадр.
• SA --- Адреса джерела (Source Address): 12 символів, що показують адресу відправника кадру.
• INFO --- Поле даних (Information Field): 0 до 4478 байтів інформації.
• FCS --- Контрольна сума (Frame Check Sequence): 8 символів CRC.
• ED --- Кінцевий роздільник (Ending Delimiter): символ 'T'.
• FS --- Кінець кадру (End of Frame Sequence): 3 символи індикатора.
Формат маркера
• PA --- Преамбула (Preamble): 4 або більше порожніх символів.
• SD --- Стартовий роздільник (Starting Delimiter): Символи 'J' і 'K'.
• FC --- Frame Control: 2 символи, що відповідають за тип маркера.
• ED --- Кінцевий роздільник (Ending Delimiter): два символи 'T'.
Станція отримує право передати інформацію в мережу, коли виявляє проходящий маркер. Маркер - сигнал управління, що складається з унікальної послідовності символів, яка циркулює по кільцю після кожної інформаційної передачі. Будь-яка станція, після виявлення маркера, може фіксувати маркер, видаляючи його з кільця. Станція може потім передати один або більшу кількість фреймів інформації. При завершенні інформаційної передачі станція видає новий маркер, який забезпечує іншим станціям можливість дістати доступ до кільця.
Передача біт
Для передачі інформації FDDI використовує світлові імпульси від станції до станції. Мінімальний об'єкт передачі інформації - біт. Щоб мати можливість передавати дані, необхідно уміти передавати по оптоволоконному (або мідному) кабелю біт і уміти його розпізнавати.
У FDDI використовується проста схема - зміна відповідає "1", постійність "0". Приблизно кожні 8 нс. станція перевіряє стан світла від сусідньої станції і якщо стан змінився, то"1" інакше - "0".
Рис.15 Передача біт
Властивості мереж FDDI
Синхронна і асинхронна передача
Підключені до мережі FDDI станції можуть передавати свої дані в кільце в двох режимах - в синхронному і в асинхронному.
Синхронна передача. В процесі ініціалізації мережі визначається очікуваний час обходу кільця маркером - TTRT (Target Token Rotation Time). Кожній станції, що захопила маркер, відводиться гарантований час для передачі її даних в кільце. По закінчення цього часу станція повинна закінчити передачу і відправити маркер в кільце.
Асинхронна передача. Кожна станція у момент посилки нового маркера включає таймер, що вимірює часовий інтервал до моменту повернення до неї маркера, - TRT (Token Rotation Timer). Якщо маркер повернеться до станції раніше очікуваного часу обходу TTRT, то станція може продовжити час передачі своїх даних в кільце і після закінчення синхронної передачі. Додатковий часовий інтервал для передачі станцією буде рівний різниці між очікуваним і реальним часом обходу кільця маркером.
Підстандарт FDDI PMD (Physical medium-dependent layer) як базова кабельна система визначає багатомодовий волоконно-оптичний кабель з діаметром світлопроводів 62.5/125 мкм. Допускається застосування кабелів з іншим діаметром волокон, наприклад: 50/125 мкм. Довжина хвилі - 1300 нм.
Середня потужність оптичного сигналу на вході станції повинна бути не менше -31 дБм. При такій вхідній потужності ймовірність помилки на біт при ретрансляції даних станцією не повинна перевищувати 2.5*10-10 . При збільшенні потужності вхідного сигналу на 2 дБм, ця ймовірність повинна знизитися до 10-12.
Кодування символів
FDDI кодує інформацію, використовуючи символи. Символ - 5 бітова послідовність. Два символи складають один байт. Це 5 бітове кодування забезпечує 16 символів даних (0-F), 8 контрольних символів (Q, H, I, J, K, T, R, S) і 8 символів порушення (V).
Підключення обладнання до мережі FDDI
Є два основні способи підключення комп'ютерів до мережі FDDI: безпосередньо, а також і через мости або маршрутизатори до мереж інших протоколів.
Безпосереднє підключення
Цей спосіб підключення використовується, як правило, для підключення до мережі FDDI файлів, архіваційних і інших серверів, середніх і великих ЕОМ, тобто ключових мережевих компонентів, що є головними обчислювальними центрами, що надають сервіс для багатьох користувачів і вимагають високих швидкостей введення-виведення по мережі.
Аналогічно можна підключити і робочі станції. Проте, оскільки мережеві адаптери для FDDI вельми дорогі, цей спосіб застосовується тільки в тих випадках, коли висока швидкість обміну по мережі є обов'язковою умовою для нормальної роботи додатку. Приклади таких застосувань: системи мультимедіа, передача відео і звукової інформації.
Для підключення до мережі FDDI персональних комп'ютерів застосовуються спеціалізовані мережеві адаптери, які звичайним способом вставляються в один з вільних слотів комп'ютера. Такі адаптери виробляються фірмами: 3Com, IBM і ін. На ринку є карти під всі поширені шини - ISA, EISA і Micro Channel; є адаптери для підключення станцій класів А або В для всіх видів кабельної системи - волоконно-оптичною, екранованою і неекранованою витою парою. Всі провідні виробники UNIX машин (DEC, Hewlett-Packard, IBM, та інші) передбачають інтерфейси для безпосереднього підключення до мереж FDDI.
Підключення через мости і маршрутизатори
Мости (bridges) і маршрутизатори (routers) дозволяють підключити до FDDI мережі інші протоколи, наприклад, Token Ring і Ethernet. Це робить можливим економічне підключення до FDDI великого числа робочих станцій і іншого мережевого обладнання як в нових, так і в уже існуючих ЛВС.