Відмінності між версіями «Дві леми двоїстості»
Матеріал з Вікі ЦДУ
(→Дві леми двоїстості) |
(→Дві леми двоїстості) |
||
Рядок 1: | Рядок 1: | ||
===Дві леми двоїстості=== | ===Дві леми двоїстості=== | ||
'''Лема 3.1''' (основна нерівність теорії двоїстості). Якщо <math>X=(x_1,x_2,\ldots,x_n)</math> та <math>Y=(y_1,y_2,\ldots,y_m)</math>— допустимі розв’язки <br> відповідно прямої та двоїстої задач, то виконується нерівність: | '''Лема 3.1''' (основна нерівність теорії двоїстості). Якщо <math>X=(x_1,x_2,\ldots,x_n)</math> та <math>Y=(y_1,y_2,\ldots,y_m)</math>— допустимі розв’язки <br> відповідно прямої та двоїстої задач, то виконується нерівність: | ||
− | <center> <math>F(X) \le Z(Y)</math> або <math>\sum_{j=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i .</math> | + | <center> <math>F(X) \le Z(Y)</math> або <math>\sum_{j=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i .</math> (3.7)</center> |
''Доведення.''Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі: | ''Доведення.''Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі: | ||
Рядок 22: | Рядок 22: | ||
Підсумувавши праві і ліві частини нерівностей, отримаємо: | Підсумувавши праві і ліві частини нерівностей, отримаємо: | ||
− | <math>\sum_{i=1}^m y_i (\sum_{j=1}^n a_{ij} x_j) \le \sum_{i=1}^m b_i y_i (3.8)</math> | + | <center> <math>\sum_{i=1}^m y_i (\sum_{j=1}^n a_{ij} x_j) \le \sum_{i=1}^m b_i y_i (3.8)</math> </center> |
Аналогічно перетворимо систему обмежень (3.5) двоїстої за-дачі: | Аналогічно перетворимо систему обмежень (3.5) двоїстої за-дачі: | ||
Рядок 35: | Рядок 35: | ||
Підсумувавши після множення тут також ліві та праві части-ни, отримаємо нерівність: | Підсумувавши після множення тут також ліві та праві части-ни, отримаємо нерівність: | ||
− | <math>\sum_{j=1}^n x_j (\sum_{i=1}^m a_{ij} y_i) \ | + | <center> <math>\sum_{j=1}^n x_j (\sum_{i=1}^m a_{ij} y_i) \ge \sum_{j=1}^n c_j x_j </math> (3.9)</center> |
Версія за 09:29, 4 травня 2012
Дві леми двоїстості
Лема 3.1 (основна нерівність теорії двоїстості). Якщо Неможливо розібрати вираз (невідома помилка): X=(x_1,x_2,\ldots,x_n) та Неможливо розібрати вираз (невідома помилка): Y=(y_1,y_2,\ldots,y_m)
— допустимі розв’язки
відповідно прямої та двоїстої задач, то виконується нерівність:
або Неможливо розібрати вираз (невідома помилка): \sum_{j=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i .(3.7)
Доведення.Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі:
Маємо:
Підсумувавши праві і ліві частини нерівностей, отримаємо:
Аналогічно перетворимо систему обмежень (3.5) двоїстої за-дачі:
Підсумувавши після множення тут також ліві та праві части-ни, отримаємо нерівність: