Відмінності між версіями «Дві леми двоїстості»
Матеріал з Вікі ЦДУ
(→Дві леми двоїстості) |
(→Дві леми двоїстості) |
||
Рядок 19: | Рядок 19: | ||
a_{m1} x_1 y_m + a_{m2} x_2 y_m + \ldots + a_{mn} x_n y_m \le b_m y_m \\ | a_{m1} x_1 y_m + a_{m2} x_2 y_m + \ldots + a_{mn} x_n y_m \le b_m y_m \\ | ||
\end{array}} \right.</math></center> | \end{array}} \right.</math></center> | ||
+ | |||
+ | Підсумувавши праві і ліві частини нерівностей, отримаємо: | ||
+ | |||
+ | \sum_{i=1}^m y_i |
Версія за 09:05, 4 травня 2012
Дві леми двоїстості
Лема 3.1 (основна нерівність теорії двоїстості). Якщо Неможливо розібрати вираз (невідома помилка): X=(x_1,x_2,\ldots,x_n) та Неможливо розібрати вираз (невідома помилка): Y=(y_1,y_2,\ldots,y_m)
— допустимі розв’язки
відповідно прямої та двоїстої задач, то виконується нерівність:
або Неможливо розібрати вираз (невідома помилка): \sum_{j=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i .(3.7)
Доведення.Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі:
Маємо:
Підсумувавши праві і ліві частини нерівностей, отримаємо:
\sum_{i=1}^m y_i