Відмінності між версіями «Комбінаторика 2021 Частина 1»
Basilb (обговорення • внесок) (→Питання до екзамену) |
Basilb (обговорення • внесок) (→Тема. Аксіоматика множини натуральних чисел.) |
||
Рядок 169: | Рядок 169: | ||
[https://owncloud.kspu.kr.ua/index.php/s/3hQinvBChVwW4T4 Самостійна робота №5] | [https://owncloud.kspu.kr.ua/index.php/s/3hQinvBChVwW4T4 Самостійна робота №5] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Змістовий модуль. Комбінаторика== | ==Змістовий модуль. Комбінаторика== |
Версія за 08:38, 3 лютого 2021
Зміст
Назва курсу
Комбінаторика. Частина 1.
Галузь знань: 01 Освіта / Педагогіка
Спеціальність: 014 Середня освіта
Освітньо-кваліфікаційний рівень: бакалавр
Мета та завдання навчального курсу
Мета – сформувати у студентів знання , вміння і навички, необхідні для засвоєння курсу програмування, побудови комбінаторних математичних моделей реальних об’єктів, проектування систем обробки інформації з використанням алгебричного підходу, розробки ефективних алгоритмів та їх аналізу.
Завдання вивчення дисципліни – навчити студентів використовувати апарат сучасної математики для розв’язування практичних задач, що пов’язані з розробкою програмних комплексів для ЕОМ та створенням алгоритмів вирішення прикладних проблем.
У результаті вивчення навчального курсу студент повинен
знати:
- способи опису множини та її елементів, операцій над множинами;
- властивості відношень, способи задання відношень, бінарні відношення еквівалентності, часткового порядку, функціональні відношення;
- поняття потужності множини, основні кардинальні числа;
- типи та композиції відображень;
- основні типи задач комбінаторного аналізу;
- визначення понять: перестановки, розміщення, комбінації елементів;
- метод твірних функцій;
вміти:
- виконувати дії над елементами множини;
- використовувати діаграми Вена або кола Ейлера;
- розраховувати перестановки, розміщення, комбінації та використовувати їх в конкретних задачах;
- застосовувати елементи комбінаторного аналізу до комбінаторних систем з оптимальним розподілом елементів;
- використовувати біномінальні коефіцієнти для генерування к-елементних підмножин.
Автори курсу
Учасники
Сторінка координування курсу "Навчальний курс "Комбінаторика. Частина 1." викладач Болілий Василь Олександрович
Графік навчання
Варіант Структура
Змістовий модуль Множини
Множини
Тема. Множини і операції над ними.
Тема. Відношення.
Тема. Функціональні відношення.
Потужність множини
Тема. Потужність множини.
Тема. Аксіоматика множини натуральних чисел.
Змістовий модуль Комбінаторика
Комбінаторика
Тема. Суми та добутки.
Тема. Найпростіші комбінаторні об’єкти.
Тема. Комбінаторні тотожності.
Тема. Подільність чисел.
Тема. Спеціальні функції та числа.
Тема. Рекурентні співвідношення.
Тема. Твірні функції.
Зміст курсу
Змістовий модуль. Теорія множин
Тема. Множини і операції над ними.
Теоретичний матеріал
Практичні завдання
Самостійна робота
Тема. Відношення.
Теоретичний матеріал
Практичні завдання
Тема. Функціональні відношення.
Теоретичний матеріал
Практичні завдання
Самостійна робота
Тема. Потужність множин.
Теоретичний матеріал
Практичні завдання
Самостійна робота
Тема. Аксіоматика множини натуральних чисел.
Теоретичний матеріал
Практичні завдання
Самостійна робота
Змістовий модуль. Комбінаторика
Тема. Комбінаторика.
Теоретичний матеріал
Практичні завдання
Тема. Рекурентні співвідношення.
Теоретичний матеріал
Практичні завдання
Тема. Твірні функції.
Практичні завдання
Тема. Лінійні рекурентні співвідношення.
Практичні завдання
Контрольна робота
Питання до екзамену
Ресурси
Рекомендована література
Базова
- Айгнер М. Комбинаторная теория: пер. с англ. – М. Мир, 1982 – 558 с.
- Ахо А., Хопкрофт В., Ульман Дж. Структуры данных и алгоритмы. – М.: Издательский дом «Вильямс», 2003. – 384 с.
- Белоусов А.И., Ткачев С.Б. Дискретная математика: Учеб. для вузов / Под. ред. В.С. Зарубина, А.П. Крищенко. – 3-е изд., стереотип. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 744 с. (Сер. Математика в техническом университете; Вып. ХІХ).
- Бордачков Ю.М. та ін. Дискретна математика: Підручник/ Ю.М. Бардачков, Н.А.Соколова, В.Є. Ходаков; За ред. В.Є. Ходакова. – К.: Вища шк.., 2002. – 287 с.
- Глибовець М.М. Основи комп’ютерних алгоритмів. – К.: Вид. дім «КМ Академія», 2003. – 452 с.
- Глушков В.М. Введение в кибернетику. – К.: Изд-во АН УССР, 1964. -
- Грэхэм Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики - М.: Мир, 1998. – 703.
- Донской В.И. Дискретная математика. – Симферополь: Издательство «СОНАТ», 2000. – 360 с.
- Ежов И.И., Скороход А.В., Ядренко М.И. Элементы комбинаторики. М.: Главная редакция физико-математической литературы издательства «Наука», 1977 – 80 с.
- Ерош И.Л. Дискретная математика. Булева алгебра, комбинационные схеми, преобразования двоичных последовательностей: Учеб пособие / СПбГУАП. СПб., 2001. – 30 с.
- Капітонова Ю.В., Кривий С.Л., Летичевський О.А., Луцький Г.М., Печурін М.К. Основи дискретної математики: Підручник. – К.: «Наукова думка», 2002. 579 с.
- Колмогоров А.М., Фомін С.В. Елементи теорії функцій і функціонального аналізу. – К.: Вища школа,1974. – 456 с.
- Комп’ютерна дискретна математика: Підручник/ М.Ф.Бондаренко, Н.В.Білоус, А.Г.Руткас. – Харків: «Компанія СМІТ», 2004. – 480 с.
- Шоломов Л.А. Основи теории дискретных логических и вычислительных устройств.– М.: Наука. Главная редакция физико-математической литературы, 1980. – 400 с.
- Ядренко М.Й. Дискретна математика: навчальний посібник. – К.: МП «ТВіМС», 2004. – 245 с.
Допоміжна
- Акимов О.Е. Дискретная математика: логика, группы, графы. 2-е изд., дополн. – М.: Лаборатория Базовых Знаний, 2001 – 376 с.
- Белов В.В. и др. Теория графов. – М.: «Высшая школа», 1976. – 392 с.
- Виленкин Н.Я. Комбинаторика. – М.: Наука, 1969. – 328 с.
- Глушков В.М. Синтез цифровых автоматов. – М.: Физматгиз, 1962. – 476 с.
- Горбатов В.А. Основы дискретной математики: Учеб. Пособие для студентов вузов. – М.: Высш. шк., 1986. – 311 с.
- Емеличев В.А. и др. Лекции по теории графов. – М.: Наука, 1990. – 384 с.
- Иванов Б.Н. Дискретная математика. Алгоритмы и программы: Учеб. Пособие. – М.: Лаборатория Базовых Знаний, 2002. – 288 с.
- Калужнин Л.А. Введение в общую алгебру. М.: Наука, 1973. – 448 с.
- Кормен Т., Лейзерсон Ч. Ривест Р. Алгоритмы: построение и анализ. М: МЦНМО, 2001 – 960с.
- Кофман А. Введение в прикладную комбинаторику. – М.: Наука, 1975. – 480 с.
- Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. – М.: Энергия, 1980 – 344 с.
- Кулаков Ю.В., Шамкин В.Н. Дискретная математика: Учебное пособие. Тамбов: Изд-во Тамб. Гос. Техн. Ун-та, 2004. – 80 с.
- Липский В. Комбинаторика для программистов. – М.: Мир, 1988. – 213 с.
- Мендельсон Э. Введение в математическую логику. М: Наука, 1984. – 320с
- Новиков Ф.А. Дискретная математика для программистов. – СПб: Питер, 2001. – 304 с.
- Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. – М.: Мир,1980. – 476 с.
- Сачков В.Н. Введение в комбинаторные методы дискретной математики. – М.: Наука, 1982. – 384 с.
- Трахтенброт Б.А., Бардзинь Я.М. Конечные автоматы (поведение и синтез). – М.: Наука, 1970. – 400 с.
- Ядренко М.Й., Оленко А.Я. Дискретная математика. Навчально-методичний посібник. – К., 1995. – 83 с.
Інформаційні ресурси
- Вікі-портал КДПУ : http://wiki.kspu.kr.ua
- Вікіпедія : http://uk.wikipedia.org
---