Відмінності між версіями «Стаття до проекту "Штучний інтелект" Жданова Ірина Ігорівна»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
Рядок 17: Рядок 17:
 
Нейроподібні мережі пройшли довгий шлях становлення і розвитку, від повного заперечення можливості їх застосування до втілення в багато сфер діяльності людини.
 
Нейроподібні мережі пройшли довгий шлях становлення і розвитку, від повного заперечення можливості їх застосування до втілення в багато сфер діяльності людини.
  
 +
[[Файл:1.jpg|міні]]
  
 
Сучасні цифрові обчислювальні машини здатні з високою швидкодією і точністю вирішувати формалізовані завдання з цілком певними даними за заздалегідь відомими алгоритмами. Проте в тих випадках, коли завдання не піддається формалізації, а вхідні дані неповні, зашумлені або суперечливі, застосування традиційних комп’ютерів стає неефективним. Альтернативою їм стають спеціалізовані комп’ютери, що реалізовують нетрадиційні нейромережеві технології. Сильною стороною цих комплексів є нестандартний характер обробки інформації. Вона кодується і запам’ятовується не в окремих елементах пам’яті, а в розподілі зв’язків між нейронами і в їх силі, тому стан кожного окремого нейрона визначається станом багатьох інших нейронів, пов’язаних з ним. Отже, втрата одного або декількох зв’язків не робить істотного впливу на результат роботи системи в цілому, що забезпечує її високу надійність [76].
 
Сучасні цифрові обчислювальні машини здатні з високою швидкодією і точністю вирішувати формалізовані завдання з цілком певними даними за заздалегідь відомими алгоритмами. Проте в тих випадках, коли завдання не піддається формалізації, а вхідні дані неповні, зашумлені або суперечливі, застосування традиційних комп’ютерів стає неефективним. Альтернативою їм стають спеціалізовані комп’ютери, що реалізовують нетрадиційні нейромережеві технології. Сильною стороною цих комплексів є нестандартний характер обробки інформації. Вона кодується і запам’ятовується не в окремих елементах пам’яті, а в розподілі зв’язків між нейронами і в їх силі, тому стан кожного окремого нейрона визначається станом багатьох інших нейронів, пов’язаних з ним. Отже, втрата одного або декількох зв’язків не робить істотного впливу на результат роботи системи в цілому, що забезпечує її високу надійність [76].
Рядок 24: Рядок 25:
  
  
Наведені вище переваги нейромережевої обробки даних визначають '''сфери''' їх застосування:
+
Наведені вище переваги нейромережевої обробки даних визначають '''сфери''' їх застосування:[[Файл:2.png|міні]]
  
 
– обробка і аналіз зображень;
 
– обробка і аналіз зображень;
Рядок 44: Рядок 45:
 
Основні положення теорії діяльності головного мозку і математична модель нейрона були розроблені '''У. Маккалоком і Ч. Піттсом''' в 1943 році і опубліковані в статті «Логічне обчислення ідей, що відносяться до нервової діяльності», яка була видана російською мовою в збірці «Автомати» тільки через 13 років. Згідно із запропонованою моделлю мозком є ансамбль нейронів, що мають однакову структуру. Кожен нейрон реалізує деяку функцію, названу пороговою, над вхідними значеннями. Якщо значення функції перевищує певну величину – поріг (що характеризує сумарну значущість отриманої нейроном інформації), нейрон збуджується і формує вихідний сигнал для передачі його іншим нейронам. Пройшовши шлях від рецепторів (слухових, зорових і інших) через нейронні структури мозку до виконавчих органів, вхідна інформація перетвориться в набір керувальних дій адекватних ситуації [75].
 
Основні положення теорії діяльності головного мозку і математична модель нейрона були розроблені '''У. Маккалоком і Ч. Піттсом''' в 1943 році і опубліковані в статті «Логічне обчислення ідей, що відносяться до нервової діяльності», яка була видана російською мовою в збірці «Автомати» тільки через 13 років. Згідно із запропонованою моделлю мозком є ансамбль нейронів, що мають однакову структуру. Кожен нейрон реалізує деяку функцію, названу пороговою, над вхідними значеннями. Якщо значення функції перевищує певну величину – поріг (що характеризує сумарну значущість отриманої нейроном інформації), нейрон збуджується і формує вихідний сигнал для передачі його іншим нейронам. Пройшовши шлях від рецепторів (слухових, зорових і інших) через нейронні структури мозку до виконавчих органів, вхідна інформація перетвориться в набір керувальних дій адекватних ситуації [75].
  
Окремі нейрони, з’єднуючись між собою, утворюють нову якість, яка, залежно від характеру міжнейронних з’єднань, має різні '''рівні біологічного моделювання:'''
+
Окремі нейрони, з’єднуючись між собою, утворюють нову якість, яка, залежно від характеру міжнейронних з’єднань, має різні '''рівні біологічного моделювання:'''[Файл:zhdanova4.jpg]
  
 
– група нейронів;
 
– група нейронів;

Версія за 00:08, 14 травня 2019


Тема статті

Штучна нейронна мережа


Опис проблеми

Що таке штучні нейронні мережі? Що вони можуть робити? Як вони працюють? Як їх можна використовувати? Ці і безліч подібних питань задають фахівці з різних областей.

Що ж таке нейроподібна мережа?

Це штучний аналог біологічної мережі, який за своїми параметрами максимально наближається до оригіналу. 

Нейроподібні мережі пройшли довгий шлях становлення і розвитку, від повного заперечення можливості їх застосування до втілення в багато сфер діяльності людини.

1.jpg

Сучасні цифрові обчислювальні машини здатні з високою швидкодією і точністю вирішувати формалізовані завдання з цілком певними даними за заздалегідь відомими алгоритмами. Проте в тих випадках, коли завдання не піддається формалізації, а вхідні дані неповні, зашумлені або суперечливі, застосування традиційних комп’ютерів стає неефективним. Альтернативою їм стають спеціалізовані комп’ютери, що реалізовують нетрадиційні нейромережеві технології. Сильною стороною цих комплексів є нестандартний характер обробки інформації. Вона кодується і запам’ятовується не в окремих елементах пам’яті, а в розподілі зв’язків між нейронами і в їх силі, тому стан кожного окремого нейрона визначається станом багатьох інших нейронів, пов’язаних з ним. Отже, втрата одного або декількох зв’язків не робить істотного впливу на результат роботи системи в цілому, що забезпечує її високу надійність [76].

Висока «природна» перешкодостійкість і функціональна надійність стосуються як спотворених (зашумлених) потоків інформації, так і в сенсі відмов окремих процесорних елементів. Цим забезпечуються висока оперативність і достовірність обробки інформації, а просте донавчання і перенавчання мереж дозволяють при зміні зовнішніх чинників своєчасно здійснювати перехід на новий рівень вирішуваних завдань.


Наведені вище переваги нейромережевої обробки даних визначають сфери їх застосування:
2.png

– обробка і аналіз зображень;

– розпізнавання мови незалежно від диктора;

– обробка високошвидкісних цифрових потоків;

– автоматизована система швидкого пошуку інформації;

– класифікація інформації в реальному масштабі часу;

– планування, застосування сил і засобів у великих масштабах;

– вирішення трудомістких задач оптимізації;

– адаптивне управління і передбачення.

Основні положення теорії діяльності головного мозку і математична модель нейрона були розроблені У. Маккалоком і Ч. Піттсом в 1943 році і опубліковані в статті «Логічне обчислення ідей, що відносяться до нервової діяльності», яка була видана російською мовою в збірці «Автомати» тільки через 13 років. Згідно із запропонованою моделлю мозком є ансамбль нейронів, що мають однакову структуру. Кожен нейрон реалізує деяку функцію, названу пороговою, над вхідними значеннями. Якщо значення функції перевищує певну величину – поріг (що характеризує сумарну значущість отриманої нейроном інформації), нейрон збуджується і формує вихідний сигнал для передачі його іншим нейронам. Пройшовши шлях від рецепторів (слухових, зорових і інших) через нейронні структури мозку до виконавчих органів, вхідна інформація перетвориться в набір керувальних дій адекватних ситуації [75].

Окремі нейрони, з’єднуючись між собою, утворюють нову якість, яка, залежно від характеру міжнейронних з’єднань, має різні рівні біологічного моделювання:[Файл:zhdanova4.jpg]

– група нейронів;

– нейронна мережа;

– нервова система;

– розумова діяльність;

– мозок.

Іншими словами, нейроподібна мережа — це паралельна зв’язна мережа простих адаптивних елементів, яка взаємодіє з об’єктами реального світу аналогічно біологічній нервовій системі [75]. З інженерної точки зору така мережа є динамічною системою, яка сильно розпаралелює, з топологією направленого графа, яка може виконувати переробку інформації за допомогою зміни свого стану у відповідь на постійний або імпульсний вхідний сигнал.

В наш час основними напрямами реалізації мереж є:

— програмна реалізація на цифрових ЕОМ традиційної архітектури;

— програмно-апаратна реалізація у вигляді співпроцесорів до ЕОМ загального призначення;

— апаратна реалізація шляхом створення нейрокомп’ютерів на базі нейроплат у вигляді паралельних нейроподібних структур.

Ранні варіанти реалізації нейронних мереж відносяться до перших двох із вказаних напрямів. Перший напрям характеризується універсальністю, дешевизною і низькою швидкістю навчання і функціонування нейронних мереж. Для другого напряму характерна висока швидкість моделювання функціонування мереж, але при цьому існують серйозні фізичні обмеження числа модельованих елементів і зв’язків між ними, а також можливостей навчання і донавчання. Із розвитком елементної бази ЕОМ став можливим самостійний розвиток третього напряму, який поклав початок індустрії нейрокомп’ютерів, що подають сукупність апаратних і програмних засобів для реалізації моделей нейронних мереж.

На сьогоднішній день відомо вже більше 200 різних парадигм нейронних мереж (не лише детермінованих, але і імовірнісних), десятки НПС реалізовані в спеціалізованих кристалах і платах, на їх основі створені потужні робочі станції і навіть суперкомп’ютери. Сучасні технології досягли того рубежу, коли стало можливим виготовлення технічної системи з 3.4 млрд. нейронів (саме така кількість їх в мозку людини). Проте їх з’єднання продовжує залишатися проблемою

  1. ПЕРЕНАПРАВЛЕННЯ [[1]]
  2. ПЕРЕНАПРАВЛЕННЯ [[2]]
  3. ПЕРЕНАПРАВЛЕННЯ [[3]]

Блог до проекту

https://shtuchnyiintelektzhdanova.blogspot.com/

Мультимедійна презентація

https://docs.google.com/presentation/d/1FWsrcs-4a-cc8WIsaIPRmNHmAeo--zrjsGkvH-Q_P3E/edit?usp=sharing

Календар подій проекту:

Google Календар (https://calendar.google.com/calendar/r?tab=rc&pli=1&t=AKUaPmadYsnYuWUnVXdCteepoDNO9AWB60F1fT2I6-OHBo2TSuJN2Xp4NtRGbrglV-eLAmroHSMy84xY2hDp1R0smxFjP73Ouw%3D%3D)

Опитування до проекту

https://docs.google.com/forms/d/e/1FAIpQLSfu34XPtO3bVkENgyzklu7b9uofS61oEFzEB5vb1LTcMwf2YA/viewform

Фотоальбом до проекту

https://photos.app.goo.gl/6p5K8GnyQEo7rbbf9

Спілкування між учасниками проекту

  • Чат
  • Форум
  • Спільнота на базі соціальних мереж
  • Skype
  • Telegram
  • Viber
  • Wiki-сторінка
  • Сайт
  • .....

Інформаційні ресурси

Друковані джерела

  1. ...
  2. ...
  3. ...

Відеоматеріали

https://www.youtube.com/watch?v=sA2EVMd3KOU https://www.youtube.com/watch?v=9R_3auXbPaw https://www.youtube.com/watch?v=oMD8rdl-VD4

Електронні ресурси

  1. ...
  2. ...
  3. ...


Центральноукраїнський державний педагогічний університет імені Володимира Винниченка