Відмінності між версіями «Інтеграл Фур'є»
Рядок 25: | Рядок 25: | ||
<math>f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]=\frac1{2l} \int\limits_{-l}^{l} f(x)dx+\frac1{l} \sum_{n=1}^{\infty}\int\limits_{-l}^{l} f(t)\cos(\frac{nt\pi}{l})dt\cos(\frac{nx\pi}{l})+ | <math>f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]=\frac1{2l} \int\limits_{-l}^{l} f(x)dx+\frac1{l} \sum_{n=1}^{\infty}\int\limits_{-l}^{l} f(t)\cos(\frac{nt\pi}{l})dt\cos(\frac{nx\pi}{l})+ | ||
− | |\frac1{l} \int\limits_{-l}^{l} f( | + | |<math>+\frac1{l} \int\limits_{-l}^{l} f(t)\sin(\frac{nt\pi}{l})dt\sin(\frac{n\pi}{l} |
Версія за 17:48, 20 травня 2010
Жан Батист Жозеф Фурье (Jean Baptiste Joseph Fourier}; 21 марта 1768, Осер, Франция — 16 мая 1830, Париж), французский математик и физик.
Научные достижения
- Монографии «Аналитическая теория тепла», в которой был дан вывод уравнения теплопроводности в твёрдом теле, и разработка методов его интегрирования при различных граничных условиях. Метод Фурье состоял в представлении функций в виде тригонометрических рядов Фурье.
- Нашёл формулу представления функции с помощью интеграла, играющую важную роль в современной математике.
Интеграл Фур'є
Розглянем функцію f(x) визначену на проміжку [-\infty\infty]
Розглянем [-l,l] Неможливо розібрати вираз (невідома помилка): f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]
де коефіцієнти Фур’є Неможливо розібрати вираз (невідома помилка): a_n
та Неможливо розібрати вираз (невідома помилка): b_n обчислюються за такими формулами:
Неможливо розібрати вираз (невідома помилка): a_0= \frac1{l} \int\limits_{-l}^{l} f(x)dx \qquad a_n= \frac1{l} \int\limits_{-l}^{l} f(x)\cos(\frac{nx\pi}{l})dx \qquad b_n= \frac1{l} \int\limits_{-l}^{l} f(x)\sin(\frac{nx\pi}{l})dx
Неможливо розібрати вираз (невідома помилка): f(x)=\frac{a_0}{2} +\sum_{n=1}^{\infty} \big[ a_n \cos(\frac{nx\pi}{l}) + b_n \sin(\frac{nx\pi}{l}) \big]=\frac1{2l} \int\limits_{-l}^{l} f(x)dx+\frac1{l} \sum_{n=1}^{\infty}\int\limits_{-l}^{l} f(t)\cos(\frac{nt\pi}{l})dt\cos(\frac{nx\pi}{l})+ |<math>+\frac1{l} \int\limits_{-l}^{l} f(t)\sin(\frac{nt\pi}{l})dt\sin(\frac{n\pi}{l}